
MATLAB® Production Server™

User’s Guide

R2013b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Production Server™

© COPYRIGHT 2012–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2012 Online only New for Version 1.0 (Release R2012b)
March 2013 Online only Revised for Version 1.0.1 (Release R2013a)
September 2013 Online only Revised for Version 1.0.2 (Release R2013b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started with MATLAB Production
Server

1
MATLAB Production Server Product Description 1-2
Key Features . 1-2

Roles in Deploying to MATLAB Production Server . . . 1-3

MATLAB Production Server Workflow 1-5

Create a Deployable Archive for MATLAB Production
Server . 1-7

Start a MATLAB Production Server Instance 1-12
Overview . 1-12
Install MATLAB Production Server 1-12
Install MATLAB Compiler Runtime (MCR) 1-13
Create a Server Instance . 1-13
Configure the Server Instance . 1-14
Start the Server . 1-14

Share a Deployable CTF Archive on the Server
Instance . 1-16

Create a Java Application That Calls the Deployed
Function . 1-17

Create a C# .NET Application That Calls a Deployed
Function . 1-22

iii

Write Deployable MATLAB Code

2
Deployment Coding Guidelines . 2-2

State-Dependent Functions . 2-3
Does My MATLAB Function Carry State? 2-3
Defensive Coding Practices . 2-3
Techniques for Preserving State . 2-4

Deploying MATLAB Functions Containing MEX
Files . 2-6

Unsupported MATLAB Data Types for Client and
Server Marshaling . 2-7

Create a Deployable CTF Archive fromMATLAB
Code

3
Compile a Deployable CTF Archive with the Library
Compiler App . 3-2

Compile a Deployable CTF Archive from the Command
Line . 3-8
Execute Compiler Projects with deploytool 3-8
Compile a Deployable CTF Archive with mcc 3-8

Modifying Deployed Functions . 3-10

iv Contents

Customizing a Compiler Project

4
Customizing the Installer . 4-2
Changing the Application Icon . 4-2
Adding Application Information . 4-3
Changing the Splash Screen . 4-4
Changing the Installation Path . 4-4
Changing the Application Logo . 4-5
Editing the Installation Notes . 4-5

Manage the Required Files Compiled into a Project . . 4-6
Dependency Analysis . 4-6
Using the Compiler Apps . 4-6
Using mcc . 4-7

Specify Additional Files to Be Installed with the
Application . 4-8

Server Management

5
Server Overview . 5-2
What is a Server? . 5-2
How Does a Server Manage Work? 5-2

Install MATLAB Production Server 5-5
Prerequisite for Windows Installations 5-5
Ensure Deployment Architecture Compatibility 5-5
Run the Installation and Licensing Wizards 5-5
Download and Install the MATLAB Compiler Runtime
(MCR) . 5-6

Run mps-setup to Set Location of MATLAB Compiler
Runtime (MCR) . 5-6

DisableWindows Interactive Error Reporting (Optional) . . 5-8

License Management for MATLAB Production
Server . 5-9

v

Specify or Verify License Server Options in Server
Configuration File . 5-9

Verify Status of License Server using mps-status 5-10
Forcing a License Checkout Using mps-license-reset 5-10

Server Creation . 5-11
Prerequisites . 5-11
Procedure . 5-11
Create a Server . 5-12
For More Information . 5-13

MATLAB Compiler Runtime (MCR) Installation 5-14
Install the MATLAB Compiler Runtime (MCR) 5-14

Secure a Server . 5-15
Overview . 5-15
Enabling Security . 5-15
Configuring Client Authentication . 5-16
Specifying Access to MATLAB Programs 5-17
Adjusting Security Protocols . 5-18
Improving Start Up Time when Security is Activated 5-19
Security Configuration Reference . 5-19

Configuration File Customization 5-22
Prerequisites . 5-22
Procedure . 5-22
Specify the Installed MCR to the Server Instance 5-23
For More Information . 5-26

Server Startup . 5-27
Prerequisites . 5-27
Procedure . 5-27
Start a Server . 5-28
For More Information . 5-28

Share the Deployable CTF Archive 5-30

Server Status Verification . 5-31
Prerequisite . 5-31
Procedure . 5-31
Verify Status of a Server . 5-32

vi Contents

For More Information . 5-33

Server Troubleshooting . 5-34
Procedure . 5-34
Diagnose a Server Problem . 5-34
Server Diagnostic Tools . 5-35
Common Error Messages and Resolutions 5-38
For More Information . 5-39

Client Programming

6
MATLAB Production Server Examples Available on
MATLAB Central . 6-2

Create a MATLAB Production Server Client 6-3

Unsupported MATLAB Data Types for Client and
Server Marshaling . 6-4

Java Client Programming

7
Java Client Coding Best Practices 7-2
Java Client Prerequisites . 7-2
Manage Client Lifecycle . 7-3
Handling Java Client Exceptions . 7-5
Managing System Resources . 7-5
Configure Client Timeout Value for Connection with a
Server . 7-5

Where to Find the Javadoc . 7-7

Bond Pricing Tool with GUI for Java Client 7-8
Objectives . 7-8
Step 1: Write MATLAB Code . 7-8

vii

Step 2: Create a Deployable CTF Archive with the Library
Compiler App . 7-9

Step 3: Share the Deployable CTF Archive on a Server . . . 7-9
Step 4: Create the Java Client Code 7-10
Step 5: Build the Client Code and Run the Example 7-13

Accessing Secure Programs Using HTTPS 7-14
Overview . 7-14
Configuring the Client’s Environment for SSL 7-14
Establishing an HTTPS Connection 7-15
Advanced Security Configuration . 7-16

Code Multiple Outputs for Java Client 7-19

Code Variable-Length Inputs and Outputs for Java
Client . 7-21

Marshal MATLAB Structures (Structs) in Java 7-23
Marshaling a Struct Between Client and Server 7-24

Data Conversion with Java and MATLAB Types 7-31
Working with MATLAB Data Types 7-31
Scalar Numeric Type Coercion . 7-32
Dimensionality in Java and MATLAB Data Types 7-33
Empty (Zero) Dimensions . 7-35
Boxed Types . 7-37
Signed and Unsigned Types in Java and MATLAB Data
Types . 7-37

.NET Client Programming

8
.NET Client Coding Best Practices 8-2
.NET Client Prerequisites . 8-2
Handling Exceptions . 8-3
Managing System Resources . 8-3
Configure Client Timeout Value for Connection with a
Server . 8-4

viii Contents

Data Conversion for .NET and MATLAB Types 8-5
Where to Find the API Documentation 8-5

Preparing Your Microsoft Visual Studio
Environment . 8-6
Creating a Microsoft Visual Studio Project 8-6
Creating a Reference to the Client Run-Time Library 8-6

Access Secure Programs Using HTTPS 8-7
Overview . 8-7
Configure the Client Environment for SSL 8-7
Establish a Secure Proxy Connection 8-7
Establish a Secure Connection using Client
Authentication . 8-8

Implementing Advanced Authentication Features 8-9

Bond Pricing Tool with GUI for .NET Client 8-10
Objectives . 8-10
Step 1: Write MATLAB Code . 8-10
Step 2: Create a Deployable CTF Archive with the Library
Compiler App . 8-11

Step 3: Share the Deployable CTF Archive on a Server . . . 8-11
Step 4: Create the C# Client Code . 8-12
Step 5: Build the Client Code and Run the Example 8-13

Code Multiple Outputs for C# .NET Client 8-15

Code Variable-Length Inputs and Outputs for .NET
Client . 8-17
Using varargin with .NET Client . 8-17
Using varargout with .NET Client . 8-18

Marshal MATLAB Structures (structs) in C# 8-22
Creating a MATLAB Structure . 8-22
Using .NET Structs and Classes . 8-23
Using Attributes . 8-29

Data Conversion with C# and MATLAB Types 8-34
Working with MATLAB Data Types 8-34
Scalar Numeric Type Coercion . 8-35
Dimension Coercion . 8-36

ix

Empty (Zero) Dimensions . 8-39

Commands — Alphabetical List

9

Data Conversion Rules

A
Conversion of Java Types to MATLAB Types A-2

Conversion of MATLAB Types to Java Types A-4

Conversion Between MATLAB Types and C# Types . . . A-6

MATLAB Production Server .NET Client API
Classes and Methods

B
MATLABException . B-2
About MATLABException . B-2
Members . B-2
Requirements . B-4
See Also . B-4

MATLABStackFrame . B-5
About MATLABStackFrame . B-5
Members . B-5
Requirements . B-7
See Also . B-7

MWClient . B-8
About MWClient . B-8

x Contents

Members . B-8
Requirements . B-9
See Also . B-9

MWHttpClient . B-10
About MWHttpClient . B-10
Members . B-11
Requirements . B-12
See Also . B-12

MWStructureListAttribute . B-13
About MWStructureListAttribute . B-13
Members . B-13
Requirements . B-13

Index

xi

xii Contents

1

Getting Started with
MATLAB Production Server

• “MATLAB® Production Server™ Product Description” on page 1-2

• “Roles in Deploying to MATLAB® Production Server™” on page 1-3

• “MATLAB® Production Server™ Workflow” on page 1-5

• “Create a Deployable Archive for MATLAB® Production Server™” on page
1-7

• “Start a MATLAB® Production Server™ Instance” on page 1-12

• “Share a Deployable CTF Archive on the Server Instance” on page 1-16

• “Create a Java Application That Calls the Deployed Function” on page 1-17

• “Create a C# .NET Application That Calls a Deployed Function” on page
1-22

1 Getting Started with MATLAB® Production Server™

MATLAB Production Server Product Description
Run MATLAB® programs as part of web, database, and enterprise
applications

MATLAB Production Server™ lets you run MATLAB programs within
your production systems, enabling you to incorporate numerical analytics
in enterprise applications. Web, database, and enterprise applications
connect to MATLAB programs running on MATLAB Production Server via
a lightweight client library, isolating the MATLAB programs from your
production system. You use MATLAB Compiler™ to package programs
and deploy them directly to MATLAB Production Server without recoding
or creating custom infrastructure to manage them. MATLAB Production
Server runs on multiprocessor and multicore servers, providing low-latency
processing of many concurrent requests. You can deploy the product on
additional computer servers to increase the number of concurrent requests
the system can handle and to provide redundancy.

Key Features

• Production deployment of MATLAB programs without recoding or creating
custom infrastructure

• Scalable performance and management of packaged MATLAB programs

• Lightweight client library for calling numerical processing programs from
enterprise applications

• Common infrastructure across .NET and Java® development environments

• Isolation of MATLAB processes from other system elements

1-2

Roles in Deploying to MATLAB® Production Server™

Roles in Deploying to MATLAB Production Server
Deploying MATLAB functionality using MATLAB Production Server is a
multistep process that might involve one or more team members. Each step
requires fulfilling specific roles, as shown in MATLAB® Production Server™
Deployment Roles on page 1-3 .

MATLAB Production Server Deployment Roles

Role Knowledge Base Responsibilities

MATLAB programmer
• MATLAB expert

• Little to no software
development experience

• Little to no IT experience

• Develop functions and
implements them in
MATLAB.

• Create deployable archives
(CTF Archive) that are
deployed into MATLAB
Production Server.

Application developer
• Little to no MATLAB
experience

• Some knowledge of IT
systems

• Familiarity with developing
applications using a
client/server architecture

• Develop applications
using one of the MATLAB
Production Server client
APIs.

• Test applications.

• Package applications for
distribution.

1-3

1 Getting Started with MATLAB® Production Server™

MATLAB Production Server Deployment Roles (Continued)

Role Knowledge Base Responsibilities

Server administrator
• Little to no MATLAB
experience

• Moderate IT experience

• Familiarity with IT systems

• Ensure that systems
running MATLAB
Production Server
instances have the required
specifications.

• Install MATLAB Production
Server instances.

• Tune MATLAB Production
Server instances.

• Install compiled MATLAB
applications into MATLAB
Production Server
instances.

• Monitor MATLAB
Production Server
instances.

Application installer
• Little to no MATLAB
experience

• Moderate IT experience

• Familiarity with IT systems

• Ensure that systems using
MATLAB Production Server
client applications meet the
required specifications.

• Install any required
software on target
machines.

• Install MATLAB Production
Server client applications
on target machines.

1-4

MATLAB® Production Server™ Workflow

MATLAB Production Server Workflow
The following figure illustrates the basic workflow to deploy MATLAB code
using MATLAB Production Server.

myfun.m myfun_deployed.ctf

/auto_deploy/
myfun_deployed.ctf

myfun() myfun()myfun()

Deploying MATLAB code using MATLAB Production Server is a four-phase
process:

1 Create deployable CTF archives.

1-5

1 Getting Started with MATLAB® Production Server™

MATLAB users write MATLAB functions and compile them into deployable
archives using MATLAB Compiler.

2 Deploying the archives to an instance of the MATLAB Production Server.

Server administrators take the deployable CTF archives and deploy them
into one or more instances of the MATLAB Production Server. In addition to
adding the archive to a server’s deployment folder, the server administrator
might need to:

• Install a server instance.

• Set up licenses for a server instance.

• Configure a server instance.

• Install an MCR into a server instance.

3 Write client applications that use deployed MATLAB code via the server.

Application developers use MATLAB Production Server client APIs to write
applications that use MATLAB code. MATLAB Production Server client APIs
are available for:

• Java

• C#

• REST

4 Install client applications on end-user computers.

Application installers distribute the client applications to the end-users.

1-6

Create a Deployable Archive for MATLAB® Production Server™

Create a Deployable Archive for MATLAB Production
Server

This example shows how to create a deployable archive for MATLAB
Production Server using a MATLAB function. You can then hand the
generated archive to a system administrator who will deploy it into MATLAB
Production Server.

To create a deployable CTF archive:

1 In MATLAB, examine the MATLAB code that you want to deploy.

a Open addmatrix.m.

function a = addmatrix(a1, a2)

a = a1 + a2;

b At the MATLAB command prompt, enter addmatrix(1,2).

The output appears as follows:

ans =

3

2 Open the Library Compiler.

a On the toolstrip, select the Apps tab.

b Click the arrow on the far right of the tab to open the apps gallery.

c Click Library Compiler to open theMATLAB Compiler project window.

1-7

1 Getting Started with MATLAB® Production Server™

1-8

Create a Deployable Archive for MATLAB® Production Server™

3 In the Application Type section of the toolstrip, select Generic CTF from
the list.

Note If the Application Type section of the toolstrip is collapsed, you can
expand it by clicking the down arrow .

4 Specify the MATLAB functions you want to deploy.

a In the Exported Functions section of the toolstrip, click the plus button.

Note If the Exported Functions section of the toolstrip is collapsed, you
can expand it by clicking the down arrow.

b Using the file explorer, locate and select the addmatrix.m file.

addmatrix.m is located in matlabroot\extern\examples\compiler.

c Click Open to select the file and close the file explorer.

addmatrix.m is added to the field. A minus button will appear below
the plus button.

5 In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.

Note If the Packaging Options section of the toolstrip is collapsed you can
expand it by clicking the down arrow.

This option creates an application installer that automatically downloads the
MATLAB Compiler Runtime (MCR) and installs it.

6 Explore the main body of theMATLAB Compiler project window.

The project window is divided into the following areas:

1-9

1 Getting Started with MATLAB® Production Server™

• Application Information — Editable information about the deployed
archive. This information is used by the generated installer to populate
the installed application’s metadata. See “Customizing the Installer” on
page 4-2.

• Additional Installer Options — The default installation path for the
generated installer. See “Customizing the Installer” on page 4-2.

• Files required for your application — Additional files required by the
archive. These files will be included in the generated archive. See “Manage
the Required Files Compiled into a Project” on page 4-6.

• Files installed with your application — Files that are installed with
your archive. These files include:

- readme.txt

- .ctf file

See “Specify Additional Files to Be Installed with the Application” on page
4-8.

7 Click Package.

The Package window opens while the library is being generated.

8 Select the Open output folder when process completes check box.

1-10

Create a Deployable Archive for MATLAB® Production Server™

When the deployment process is complete, a file explorer opens and displays
the generated output.

9 Verify the contents of the generated output:

• for_redistribution — A folder containing the installer to distribute
the archive to the system administrator responsible for the MATLAB
Production Server

• for_testing— A folder containing the raw files generated by the compiler

• for_redistribution_files_only — A folder containing only the files
needed to redistribute the archive

10 Click Close on the Package window.

To lean more about MATLAB Production Server see “MATLAB Production
Server”

1-11

1 Getting Started with MATLAB® Production Server™

Start a MATLAB Production Server Instance

In this section...

“Overview” on page 1-12

“Install MATLAB® Production Server™” on page 1-12

“Install MATLAB Compiler Runtime (MCR)” on page 1-13

“Create a Server Instance” on page 1-13

“Configure the Server Instance” on page 1-14

“Start the Server” on page 1-14

Overview
This example shows how to install, configure, and start an instance of
MATLAB Production Server.

To start a MATLAB Production Server instance:

1 Install MATLAB Production Server.

2 Install MATLAB Compiler Runtime (MCR).

3 Create a server instance.

4 Configure the server instance.

5 Start the server instance.

Install MATLAB Production Server
To install MATLAB Production Server:

1 Run the installer.

2 On the Installation Type dialog box, select Custom.

3 Select License Manager for installation in the product list.

1-12

Start a MATLAB® Production Server™ Instance

4 When asked where to install MATLAB Production Server, enter the name of
an empty folder.

You need the path to the installation to complete the tutorial.

5 Add the $MPS_INSTALL\script folder to your system PATH environment
variable.

$MPS_INSTALL represents your MATLAB Production Server installation
folder.

For more information about the installation process, see .

Install MATLAB Compiler Runtime (MCR)
If it is not already installed on your system, you must install the MCR.
MATLAB Production Server requires the MCR.

To install an MCR and configure MATLAB Production Server to use it:

1 Download the MCR installer from
http://www.mathworks.com/products/compiler/mcr.

2 Run the MCR installer.

For more information, see “Run mps-setup to Set Location of MATLAB
Compiler Runtime (MCR)” on page 5-6.

Create a Server Instance
To create the server instance:

1 Move to the folder where you want to create your server.

2 Run the mps-new command.

C:\tmp>mps-new prod_server_1 -v

3 Verify the output.

prod_server_1/.mps_version...ok

1-13

http://www.mathworks.com/products/compiler/mcr

1 Getting Started with MATLAB® Production Server™

prod_server_1/config/main_config...ok
prod_server_1/auto_deploy/...ok
prod_server_1/log/...ok
prod_server_1/pid/...ok
prod_server_1/old_logs/...ok
prod_server_1/.mps_socket/...ok
prod_server_1/endpoint/...ok

For more information on these folders, see “Server Diagnostic Tools” on page
5-35.

Configure the Server Instance
After you create a new server instance, you must configure it. The MATLAB
Production Server configuration file, main_config, includes many parameters
you can use to tune server performance. At a minimum, you must use the file
to specify the location of the MCR you want to use with the server.

To configure the server instance’s default MCR:

1 From the system command line, run mps-setup.

2 Follow the directions to specify which MCR version MATLAB Production
Server uses.

For more information, see “Run mps-setup to Set Location of MATLAB
Compiler Runtime (MCR)” on page 5-6.

For more information about configuration options, see “Configuration File
Customization” on page 5-22.

Start the Server
To start the server:

1 Run the mps-start command.

mps-start -C C:\tmp\prod_server_1

2 Verify the server instance has started using the mps-status command.

1-14

Start a MATLAB® Production Server™ Instance

mps-status -C C:\tmp\prod_server_1

'C:\tmp\prod_server_1' STARTED
license checked out

1-15

1 Getting Started with MATLAB® Production Server™

Share a Deployable CTF Archive on the Server Instance
To make your CTF archive available using MATLAB Production Server, you
must copy the deployable CTF archive into the auto_deploy folder in your
server instance. You can add a deployable archive into the auto_deploy
folder of a running server — the server monitors this folder dynamically and
processes the deployable archives that are added to the auto_deploy folder.

To share the deployable CTF archive created in “Create a Deployable Archive
for MATLAB® Production Server™” on page 1-7, copy the deployable CTF
archive from the deployment project’s for_redistribution_files_only folder
into the server’s auto_deploy folder.

1-16

Create a Java® Application That Calls the Deployed Function

Create a Java Application That Calls the Deployed Function
This example shows how to write a MATLAB Production Server client using
the Java client API. In your Java code, you will:

• Define a Java interface that represents the MATLAB function.

• Instantiate a proxy object to communicate with the server.

• Call the deployed function in your Java code.

To create a Java MATLAB Production Server client application:

1 Create a new file called addmatrix_client.java.

2 Using a text editor, open addmatrix_client.java.

3 Add the following import statements to the file:

import java.net.URL;
import java.io.IOException;
import com.mathworks.mps.client.MWClient;
import com.mathworks.mps.client.MWHttpClient;
import com.mathworks.mps.client.MATLABException;

4 Add a Java interface that represents the deployed MATLAB function.

The interface for the addmatrix function

function a = addmatrix(a1, a2)

a = a1 + a2;

looks like this:

interface MATLABAddMatrix {
double[][] addmatrix(double[][] a1, double[][] a2)

throws MATLABException, IOException;
}

When creating the interface, note the following:

1-17

1 Getting Started with MATLAB® Production Server™

• You can give the interface any valid Java name.

• You must give the method defined by this interface the same name as the
deployed MATLAB function.

• The Java method must support the same inputs and outputs supported by
the MATLAB function, in both type and number. For more information
about data type conversions and how to handle more complex MATLAB
function signatures, see .

• The Java method must handle MATLAB exceptions and I/O exceptions.

5 Add the following class definition:

public class MPSClientExample
{
}

This class now has a single main method that calls the generated class.

6 Add the main() method to the application.

public static void main(String[] args)
{
}

7 Add the following code to the top of the main() method:

double[][] a1={{1,2,3},{3,2,1}};
double[][] a2={{4,5,6},{6,5,4}};

These statements initialize the variables used by the application.

8 Instantiate a client object using the MWHttpClient constructor.

MWClient client = new MWHttpClient();

This class establishes an HTTP connection between the application and the
server instance.

9 Call the client object’s createProxy method to create a dynamic proxy.

You must specify the URL of the CTF file and the name of your interface
class as arguments:

1-18

Create a Java® Application That Calls the Deployed Function

MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addma
MATLABAddMatrix.class);

For more information about the createProxy method, see the Javadoc
included in the $MPS_INSTALL/client folder, where $MPS_INSTALL is the
name of your MATLAB Production Server installation folder.

10 Call the deployed MATLAB function in your Java application by calling the
public method of the interface.

double[][] result = m.addmatrix(a1,a2);

11 Call the client object’s close() method to free system resources.

client.close();

12 Save the Java file.

The completed Java file should resemble the following:

import java.net.URL;

import java.io.IOException;

import com.mathworks.mps.client.MWClient;

import com.mathworks.mps.client.MWHttpClient;

import com.mathworks.mps.client.MATLABException;

interface MATLABAddMatrix

{

double[][] addmatrix(double[][] a1, double[][] a2)

throws MATLABException, IOException;

}

public class MPSClientExample {

public static void main(String[] args){

double[][] a1={{1,2,3},{3,2,1}};

double[][] a2={{4,5,6},{6,5,4}};

MWClient client = new MWHttpClient();

1-19

1 Getting Started with MATLAB® Production Server™

try{

MATLABAddMatrix m = client.createProxy(new URL("http://localhost:9910/addmatrix"),

MATLABAddMatrix.class);

double[][] result = m.addmatrix(a1,a2);

// Print the magic square

printResult(result);

}catch(MATLABException ex){

// This exception represents errors in MATLAB

System.out.println(ex);

}catch(IOException ex){

// This exception represents network issues.

System.out.println(ex);

}finally{

client.close();

}

}

private static void printResult(double[][] result){

for(double[] row : result){

for(double element : row){

System.out.print(element + " ");

}

System.out.println();

}

}

}

13 Compile the Java application, using the javac command or use the build
capability of your Java IDE.

For example, enter the following (on one line):

H:\Work>javac -classpath "MPS_INSTALL_ROOT\client\java\mps_client.jar" addmatrix_client.java

1-20

Create a Java® Application That Calls the Deployed Function

14 Run the application using the java command or your IDE.

For example, enter the following (on one line):

H:\Work>java -classpath

.;"MPS_INSTALL_ROOT\client\java\mps_client.jar" MPSClientExample

The application returns the following at the console:

5.0 7.0 9.0
9.0 7.0 5.0

1-21

1 Getting Started with MATLAB® Production Server™

Create a C# .NET Application That Calls a Deployed
Function

This example shows how you can call a deployed MATLAB function from a
C# application using MATLAB Production Server. For information about
deploying a MATLAB function using Java, see .

In your C# code, you must:

• Create a Microsoft® Visual Studio® Project.

• Create a Reference to the Client Run-Time Library.

• Design the .NET interface in C#.

• Write, build, and run the C# application.

This task is typically performed by .NET application programmer. This part
of the tutorial assumes you have Microsoft Visual Studio and .NET installed
on your computer.

Create a Microsoft Visual Studio Project

1 Open Microsoft Visual Studio.

2 Click File > New > Project.

3 In the New Project dialog, select the project type and template you want to
use. For example, if you want to create a C# Console Application, select
Windows in the Visual C# branch of the Project Type pane, and select
the C# Console Application template from the Templates pane.

4 Type the name of the project in the Name field (Magic, for example).

5 Click OK. Your Magic source shell is created, typically named Program.cs,
by default.

Create a Reference to the Client Run-Time Library

Create a reference in your MainApp code to the MATLAB Production Server
client run-time library. In Microsoft Visual Studio, perform the following
steps:

1-22

Create a C# .NET Application That Calls a Deployed Function

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on
the right side), select the name of your project, Magic, highlighting it.

2 Right-click Magic and select Add Reference.

3 In the Add Reference dialog box, select the Browse
tab. Browse to the MATLAB Production Server client
runtime, installed at $MPS_INSTALL\client\dotnet. Select
MathWorks.MATLAB.ProductionServer.Client.dll.

4 Click OK. MathWorks.MATLAB.ProductionServer.Client.dll is now
referenced by your Microsoft Visual Studio project.

Design the .NET Interface in C#

In this example, you invoke mymagic.m, hosted by the server, from a .NET
client, through a .NET interface.

To match the MATLAB function mymagic.m, design an interface named Magic.

For example, the interface for the mymagic function:

function m = mymagic(in)
m = magic(in);

might look like this:

public interface Magic
{

double[,] mymagic(int in1);
}

Note the following:

• The .NET interface has the same number of inputs and outputs as the
MATLAB function.

• You are deploying one MATLAB function, therefore you define one
corresponding .NET method in your C# code.

• Both MATLAB function and .NET interface process the same types: input
type int and the output type two-dimensional double.

1-23

1 Getting Started with MATLAB® Production Server™

• You specify the name of your generic CTF archive (magic, which resides
in your auto_deploy folder) in your URL, when you call CreateProxy
("http://localhost:9910/magic").

Write, Build, and Run the .NET Application

Create a C# interface named Magic in Microsoft Visual Studio by doing the
following:

1 Open the Microsoft Visual Studio project, MagicSquare, that you created
earlier.

2 In Program.cs tab, paste in the code below.

Note Take care to ensure you reference the precise name of the CTF
archive you are hosting on your server, as well as the port number where
your server listens for client requests. For example, in the code below, the
URL value ("http://localhost:9910/mymagic_deployed") contains both
CTF archive name (mymagic_deployed) and port number (9910).

C# Namespace Magic

using System;

using System.Net;

using MathWorks.MATLAB.ProductionServer.Client;

namespace Magic

{

public class MagicClass

{

class CustomConfig : MWHttpClientConfig

{

public int TimeoutMilliSeconds

{

get { return 120000; }

}

}

1-24

Create a C# .NET Application That Calls a Deployed Function

public interface Magic

{

double[,] mymagic(int in1);

}

public static void Main(string[] args)

{

MWClient client = new MWHttpClient();

try

{

Magic me = client.CreateProxy<Magic>

(new Uri("http://localhost:9910/mymagic_deployed"));

double[,] result1 = me.mymagic(4);

print(result1);

}

catch (MATLABException ex)

{

Console.WriteLine("{0} MATLAB exception caught.", ex);

Console.WriteLine(ex.StackTrace);

}

catch (WebException ex)

{

Console.WriteLine("{0} Web exception caught.", ex);

Console.WriteLine(ex.StackTrace);

}

finally

{

client.Dispose();

}

Console.ReadLine();

}

public static void print(double[,] x)

{

int rank = x.Rank;

int [] dims = new int[rank];

for (int i = 0; i < rank; i++)

{

1-25

1 Getting Started with MATLAB® Production Server™

dims[i] = x.GetLength(i);

}

for (int j = 0; j < dims[0]; j++)

{

for (int k = 0; k < dims[1]; k++)

{

Console.Write(x[j,k]);

if (k < (dims[1] - 1))

{

Console.Write(",");

}

}

Console.WriteLine();

}

}

}

}

3 Build the application. Click Build > Build Solution.

4 Run the application. Click Debug > Start Without Debugging. The
program returns the following console output:

16,2,3,13
5,11,10,8
9,7,6,12
4,14,15,1

1-26

2

Write Deployable MATLAB
Code

• “Deployment Coding Guidelines ” on page 2-2

• “State-Dependent Functions” on page 2-3

• “Deploying MATLAB Functions Containing MEX Files” on page 2-6

• “Unsupported MATLAB Data Types for Client and Server Marshaling”
on page 2-7

2 Write Deployable MATLAB Code

Deployment Coding Guidelines
MATLAB coding guidelines are essentially the same for both the deployment
products and MATLAB Production Server with important distinctions
regarding functions that depend on MATLAB state.

Functions you deploy with MATLAB Production Server cannot be assumed to
retain access to the same instance of the MATLAB Compiler Runtime, since
the workers can access a number of different MCR instances. Therefore, when
using MATLAB Production Server you must take extra care to ensure that
state has not been changed or invalidated. See “State-Dependent Functions”
on page 2-3 for more information.

Refer to “Write Deployable MATLAB Code” in the MATLAB Compiler
documentation for general guidelines about deploying MATLAB code.

2-2

State-Dependent Functions

State-Dependent Functions
MATLAB code that you want to deploy often carries state—a specific data
value in a program or program variable.

Does My MATLAB Function Carry State?
Example of carrying state in a MATLAB program include, but are not limited
to:

• Modifying or relying on the MATLAB path and the Java class path

• Accessing MATLAB state that is inherently persistent or global. Some
example of this include:

- Random number seeds

- Handle Graphics® root objects that retain data

- MATLAB or MATLAB toolbox settings and preferences

• Creating global and persistent variables.

• Loading MATLAB objects (MATLAB classes) into MATLAB. If you access a
MATLAB object in any way, it loads into MATLAB.

• Calling MEX files, Java methods, or C# methods containing static variables.

Defensive Coding Practices
If your MATLAB function not only carries state, but relies on it for your
function to properly execute, you must take additional steps (listed in this
section) to ensure state retention.

When you deploy your application, consider cases where you carry state, and
safeguard against that state’s corruption if needed. Assume that your state
may be changed and code defensively against that condition.

The following are examples of “defensive coding” practices:

Reset System-Generated Values in the Deployed Application
If you are using a random number seed, for example, reset it in your deployed
application program to ensure the integrity of your original MATLAB function.

2-3

2 Write Deployable MATLAB Code

Validate Global or Persistent Variable Values
If you must use global or persistent variables, always validate their value in
your deployed application and reset if needed.

Ensure Access to Data Caches
If your function relies on cached transaction replies, for instance, ensure
your deployed system and application has access to that cache outside of
the MATLAB environment.

Use Simple Data Types When Possible
Simple data types are usually not tied to a specific application and means of
storing state. Your options for choosing an appropriate state-preserving tool
increase as your data types become less complicated and specific.

Avoid Using MATLAB Callback Functions
Avoid using MATLAB callbacks, such as timer. Callback functions have
the ability to interrupt and override the current state of the MATLAB
Production Server worker and may yield unpredictable results in multiuser
environments.

Techniques for Preserving State
The most appropriate method for preserving state depends largely on the
type of data you need to save.

• Databases provide the most versatile and scalable means for retaining
stateful data. The database acts as a generic repository and can generally
work with any application in an enterprise development environment.
It does not impose requirements or restrictions on the data structure or
layout. Another related technique is to use comma-delimited files, in
applications such as Microsoft Excel®.

• Data that is specific to a third-party programming language, such as Java
and C#, can be retained using a number of techniques. Consult the online
documentation for the appropriate third-party vendor for best practices
on preserving state.

2-4

State-Dependent Functions

Caution Using MATLAB LOAD and SAVE functions is often used to preserve
state in MATLAB applications and workspaces. While this may be successful
in some circumstances, it is highly recommended that the data be validated
and reset if needed, if not stored in a generic repository such as a database.

2-5

2 Write Deployable MATLAB Code

Deploying MATLAB Functions Containing MEX Files
If the MATLAB function you are deploying uses MEX files, ensure that
the system running MATLAB Production Server is running the version of
MATLAB Compiler used to create the MEX files.

Coordinate with your server administrator and application developer as
needed.

2-6

Unsupported MATLAB Data Types for Client and Server Marshaling

Unsupported MATLAB Data Types for Client and Server
Marshaling

These data types are not supported for marshaling between MATLAB
Production Server server instances and clients:

• MATLAB function handles

• Complex (imaginary) data

• Sparse arrays

Note See Appendix A, “Data Conversion Rules” for a complete list of
conversion rules for supported MATLAB, .NET, and Java types.

2-7

2 Write Deployable MATLAB Code

2-8

3

Create a Deployable CTF
Archive from MATLAB
Code

• “Compile a Deployable CTF Archive with the Library Compiler App” on
page 3-2

• “Compile a Deployable CTF Archive from the Command Line” on page 3-8

• “Modifying Deployed Functions” on page 3-10

3 Create a Deployable CTF Archive from MATLAB Code

Compile a Deployable CTF Archive with the Library
Compiler App

To compile MATLAB code into a deployable archive:

1 Open the Library Compiler.

a On the toolstrip select the Apps tab on the toolstrip.

b Click the arrow at the far right of the tab to open the apps gallery.

c Click Library Compiler to open theMATLAB Compiler project window.

3-2

Compile a Deployable CTF Archive with the Library Compiler App

3-3

3 Create a Deployable CTF Archive from MATLAB Code

Note You can also launch the shared library compiler using the
libraryCompiler function.

2 In the Application Type section of the toolstrip, select Generic CTF.

Note If the Application Type section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

3 Specify the MATLAB files you want deployed in the package.

a In the Exported Functions section of the toolstrip, click the plus button.

Note If the Exported Functions section of the toolstrip is collapsed, you
can expand it by clicking the down arrow.

b In the file explorer that opens, locate and select one or more the MATLAB
files.

c Click Open to select the file and close the file explorer.

The names of the selected files are added to the list and a minus button
appears below the plus button. The name of the first file listed is used as
the default application name.

4 In the Packaging Options section of the toolstrip, specify how the installer
will deliver the MATLAB Compiler Runtime (MCR) with the archive.

Note If the Packaging Options section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

You can select one or both of the following options:

3-4

Compile a Deployable CTF Archive with the Library Compiler App

• Runtime downloaded from web — Generates an installer that
downloads the MCR installer from the Web.

• Runtime included in package — Generates an installer that includes
the MCR installer.

Note Selecting both options creates two installers.

Regardless of the options selected the generated installer scans the target
system to determine if there is an existing installation of the appropriate
MCR. If there is not, the installer installs the MCR.

5 Specify the name of any generated installers.

6 In the Application Information and Additional Installer Options
sections of the compiler, customize the look and feel of the generated installer.

You can change the information used to identify the application data used
by the installer:

• Splash screen

• Application icon

• Application version

• Name and contact information of the archive’s author

• Brief summary of the archive’s purpose

• Detailed description of the archive

You can also change the default location into which the archive is installed
and provide some notes to the installer.

All of the provided information is displayed as the installer runs.

For more information see “Customizing the Installer” on page 4-2.

3-5

3 Create a Deployable CTF Archive from MATLAB Code

7 In the Files required for your application to run section of the compiler,
verify that all of the files required by the deployed MATLAB functions are
listed.

Note These files are compiled into the generated binaries along with the
exported files.

In general the built-in dependency checker will automatically populate this
section with the appropriate files. However, if needed you can manually add
any files it missed.

For more information see “Manage the Required Files Compiled into a
Project” on page 4-6.

8 In the Files installed with your application section of the compiler,
verify that any additional non-MATLAB files you want installed with the
application are listed.

Note These files are placed in the applications folder of the installation.

This section automatically lists:

• Generated deployable CTF archive

• Readme file

You can manually add files to the list. Additional files can include
documentation, sample data files, and examples to accompany the application.

For more information see “Specify Additional Files to Be Installed with the
Application” on page 4-8.

9 Click the Settings button to customize the flags passed to the compiler and
the folders to which the generated files are written.

10 Click the Package button to compile the MATLAB code and generate any
installers.

3-6

Compile a Deployable CTF Archive with the Library Compiler App

11 Verify that the generated output contains:

• for_redistribution— A folder containing the installer to distribute the
archive

• for_testing — A folder containing the raw generated files to create the
installer

• for_redistribution_files_only — A folder containing only the files
needed to redistribute the archive

3-7

3 Create a Deployable CTF Archive from MATLAB Code

Compile a Deployable CTF Archive from the Command Line

In this section...

“Execute Compiler Projects with deploytool” on page 3-8

“Compile a Deployable CTF Archive with mcc” on page 3-8

You can compile deployable archives from both the MATLAB command line
and the system terminal command line:

• deploytool invokes the compiler app to execute a presaved compiler project

• mcc invokes the raw compiler

Execute Compiler Projects with deploytool
The deploytool command has two flags to invoke the compiler without
opening a window:

• -build project_name— Invoke the compiler to build the project and do
not generate an installer.

• -package project_name — Invoke the compiler to build the project and
generate an installer.

For example, deploytool -package magicsqaure generates of the binary
files defined by the magicaqure project and packages them into an installer
that you can distribute to others.

Compile a Deployable CTF Archive with mcc
The mcc command invokes the raw compiler and provides fine-level control
over the compilation of the deployable archive. It, however, cannot package
the results in an installer.

To invoke the compiler to generate a deployable arcive use the -W
CTF:component_name flag with mcc. The -W CTF:component_name flag
creates a deployable archive called component_name.ctf.

For compiling deployable archives, you can also use the following options.

3-8

Compile a Deployable CTF Archive from the Command Line

Compiler Java Options

Option Description

-a filePath Add any files on the path to the
generated binary.

-d outFolder Specify the folder into which the
results of compilation are written.

class{className:mfilename...} Specify that an additional class is
generated that includes methods for
the listed MATLAB files.

3-9

3 Create a Deployable CTF Archive from MATLAB Code

Modifying Deployed Functions
Once you have built a deployable CTF archive with the Deployment Tool, you
can modify your MATLAB code, recompile with Deployment Tool, and see the
change instantly reflected in the archive hosted on your server. This is known
as “hot deploying” or “redeploying” a function.

To Hot Deploy, you must have a server created and running, with the built
CTF archive located in the server’s auto_deploy folder.

The server deploys the updated version of your archive when on the following
occurs:

• Compiled archive has an updated time stamp

• Change has occurred to the archive contents (new file or deleted file)

It takes a maximum of five seconds to redeploy a function using Hot
Deployment. It takes a maximum of ten seconds to undeploy a function
(remove the function from being hosted).

To use Hot Deployment as default behavior for building deployable archives
with the Deployment Tool, modify your Deployment Tool preferences to
specify your auto_deploy folder as the output folder (distrib folder) location.

See for more information.

3-10

4

Customizing a Compiler
Project

• “Customizing the Installer” on page 4-2

• “Manage the Required Files Compiled into a Project” on page 4-6

• “Specify Additional Files to Be Installed with the Application” on page 4-8

4 Customizing a Compiler Project

Customizing the Installer

In this section...

“Changing the Application Icon” on page 4-2

“Adding Application Information” on page 4-3

“Changing the Splash Screen” on page 4-4

“Changing the Installation Path” on page 4-4

“Changing the Application Logo” on page 4-5

“Editing the Installation Notes” on page 4-5

Changing the Application Icon
The application icon is used for the generated installer. For standalone
applications, it is also the application’s icon.

You can change the default icon in Application Information. To set a
custom icon:

1 Click the graphic to the left of the Application name field.

A window previewing the icon opens.

4-2

Customizing the Installer

2 Click Select icon.

3 Using the file explorer, locate the graphic file to use as the application icon.

4 Select the graphic file.

5 Click OK to return to the icon preview.

6 Select Use mask to fill any blank spaces around the icon with white.

7 Select Use border to add a border around the icon.

8 Click Save and Use to return to the main compiler window.

Adding Application Information
The Application Information section of the compiler app allows you to
provide these values:

• Application name

Determines the name of the installed executable file or shared library. For
example, if the application name is foo, the installed executable would be
foo.exe, the Windows® start menu entry would be foo. The folder created
for the application would be InstallRoot/foo.

The default value is the name of the first function listed in the Main
File(s) field of the compiler.

• Application version

The default value is 1.0.

• Author name

• Support e-mail address

• Company name

Determines the full installation path for the installed executable or shared
library. For example, if the company name is bar, the full installation path
would be InstallRoot/bar/ApplicationName.

• Summary

• Description

4-3

4 Customizing a Compiler Project

This information is all optional and, unless otherwise stated, is only used for
display purposes. It appears on the first page of the installer. On Windows
systems, this information is also displayed in the Windows Add/Remove
Programs control panel.

Changing the Splash Screen
The installer’s splash screen displays after the installer is started. It is
displayed, along with a status bar, while the installer initializes.

You can change the default image by clicking the Select custom splash
screen link in Application Information. When the file explorer opens,
locate and select a new image.

Note You can drag and drop a custom image onto the default splash screen.

Changing the Installation Path
Default Installation Paths on page 4-4 lists the default path the installer will
use when installing the compiled binaries onto a target system.

Default Installation Paths

Windows C:\Program
Files\companyName\appName

Mac OS X /Applications/companyName/appName

Linux® /usr/companyName/appName

You can change the default installation path by editing the Default
installation folder field under Additional Installer Options.

The Default installation folder field has two parts:

• root folder — A drop down list that offers options for where the install
folder is installed. Custom Installation Roots on page 4-5 lists the optional
root folders for each platform.

4-4

Customizing the Installer

Custom Installation Roots

Windows C:\Users\userName\AppData

Linux /usr/local

• install folder — A text field specifying the path appended to the root folder.

Changing the Application Logo
The application logo displays after the installer is started. It is displayed on
the right side of the installer.

You change the default image by clicking the Select custom logo link in
Additional Installer Options. When the file explorer opens, locate and
select a new image.

Note You can drag and drop a custom image onto the default logo.

Editing the Installation Notes
Installation notes are displayed once the installer has successfully installed
the packaged files on the target system. They can provide useful information
concerning any additional set up that is required to use the installed binaries
or simply provide instructions for how to run the application.

The field for editing the installation notes is in Additional Installer
Options.

4-5

4 Customizing a Compiler Project

Manage the Required Files Compiled into a Project

In this section...

“Using the Compiler Apps” on page 4-6

“Using mcc” on page 4-7

Dependency Analysis
The compiler uses a dependency analysis function to automatically determine
what additional MATLAB files are required for the application to compile and
run. These files are automatically compiled into the generated binary. The
compiler does not generate any wrapper code allowing direct access to the
functions defined by the required files.

Using the Compiler Apps
If you are using one of the compiler apps, the required files discovered by
the dependency analysis function are listed in the Files required by your
application to run field.

To add files:

1 Click the plus button in the field.

2 Select the desired file from the file explorer.

3 Click OK.

To remove files:

1 Select the desired file.

2 Press the Delete key.

Caution Removing files from the list of required files may cause your
application to not compile or to not run properly when deployed.

4-6

Manage the Required Files Compiled into a Project

Using mcc
If you are using mcc to compile your MATLAB code, the compiler does not
display a list of required files before running. Instead, it compiles all of the
required files that are discovered by the dependency analysis function and
adds them to the generated binary file.

You can add files to the list by passing one, or more, -a arguments to mcc.
The -a arguments add the specified files to the list of files to be added into the
generated binary. For example, -a hello.m adds the file hello.m to the list
of required files and -a ./foo adds all of the files in foo, and its subfolders,
to the list of required files.

4-7

4 Customizing a Compiler Project

Specify Additional Files to Be Installed with the Application
The compiler apps packages additional files to be installed along with the ones
it generates. By defaultthe installer includes a readme file with instructions
on installing the MATLAB Compiler Runtine(MCR) and configuring it.

These files are listed in the Files installed with your application section
of the app.

to add files to the list:

1 Click the plus () button in the field.

2 Select the desired file from the file explorer.

3 Click OK to close the file explorer.

To remove files from the list:

1 Select the desired file.

2 Press the Delete key.

Caution Removing the binary targets from the list results in an installer
that does not install the intended functionality.

When installed on a target computer, the files listed in the Files installed
with your application are placed in the application folder.

4-8

5

Server Management

• “Server Overview” on page 5-2

• “Install MATLAB® Production Server™” on page 5-5

• “License Management for MATLAB® Production Server™” on page 5-9

• “Server Creation” on page 5-11

• “MATLAB Compiler Runtime (MCR) Installation” on page 5-14

• “Secure a Server” on page 5-15

• “Configuration File Customization” on page 5-22

• “Server Startup” on page 5-27

• “Share the Deployable CTF Archive” on page 5-30

• “Server Status Verification” on page 5-31

• “Server Troubleshooting” on page 5-34

5 Server Management

Server Overview

In this section...

“What is a Server?” on page 5-2

“How Does a Server Manage Work?” on page 5-2

What is a Server?
You can create any number of server instances using MATLAB Production
Server software. Each server instance can host any number of deployable
archives containing MATLAB code. You may find it helpful to create one
server for all archives relating to a particular application. You can also create
one server to host code strictly for testing, and so on.

A server instance is considered to be one unique configuration of the MATLAB
Production Server product. Each configuration has its own options file
(main_config) and diagnostic files (log files, Process Identification (pid) files,
and endpoint files).

In addition, each server has its own auto_deploy folder, which contains the
deployable archives you want the server to host for clients.

The server also manages the MATLAB Compiler Runtime (MCR), which
enables MATLAB code to execute. The settings in main_config determine
how each server interacts with the MCR to process clients requests. You
can set these parameters according to your performance requirements and
other variables in your IT environment.

How Does a Server Manage Work?
A server processes a transaction using these steps:

1 The client sends MATLAB function calls to the master server process (the
main process on the server).

2 MATLAB function calls are passed to one or more MCR workers (An MCR
session).

3 MATLAB functions are executed by the MCR worker.

5-2

Server Overview

4 Results of MATLAB function execution are passed back to the master
server process.

5 Results of MATLAB function execution are passed back for processing
by the client.

The server is the middleman in the MATLAB Production Server environment.
It simultaneously accepts connections from clients, and then dispatches
MCR workers—MATLAB sessions—to process client requests to the MCR.
By defining and adjusting the number of workers and threads available to a
server, you tune capacity and throughput respectively.

• Workers (capacity management) (--num-workers) — The number of MCR
workers available to a server.

Each MCR worker dispatches one MATLAB execution request to the MCR,
interacting with one client at a time. By defining and tuning the number of
workers available to a server, you set the number of concurrent MATLAB
execution requests that can be processed simultaneously. --num-workers
should roughly correspond to the number of cores available on the local
host.

• Threads (throughput management) (--num-threads) — The number of
threads (units of processing) available to the master server process.

Throughput is the rate at which data moves during one complete pass from
client to server (represented in figure MATLAB® Production Server™ Data
Flow from Client to Server and Back on page 5-4).

5-3

5 Server Management

MATLAB® Production Server™ Data Flow from Client to Server and Back

The server does not allocate a unique thread to each client connection.
Rather, when data is available on a connection, the required processing is
scheduled on a pool of threads. --num-threads sets the size of that pool
(the number of available request-processing threads) in the master server
process. The threads in the pool do not execute MATLAB code directly.
Instead, there is a single thread within each MCR worker process that
executes MATLAB code on the client’s behalf. The number of threads
you define to a server should roughly correspond to the number of cores
available on the local host.

5-4

Install MATLAB® Production Server™

Install MATLAB Production Server

Prerequisite for Windows Installations
If you plan to install on Windows, ensure that the system on which you install
MATLAB Production Server does not depend on access to files located on
a network drive. For stable results in a production environment, servers
created with MATLAB Production Server should always have local access to
the deployable CTF archives that they host.

Ensure Deployment Architecture Compatibility
Consider if the computers running MATLAB, as well as server instances of
MATLAB Production Server that host your code, are 32-bit or 64-bit.

Your operating system and bit architectures must be compatible (or ideally,
the same) across machines running MATLAB Production Server and your
deployed components.

For additional compatibility considerations, see the MATLAB documentation.

Installing 32-Bit Version on 64-Bit Systems
You can install a 32-bit image of MATLAB Production Server on a 64-bit
version of Windows.

If you do so, you will receive a message prompting you to run set
MPS_ARCH=win32.

Run the Installation and Licensing Wizards

1 Insert the installation DVD into your computer. If the MathWorks®

Installer does not automatically start, run setup.exe.

2 Follow the instructions in the Installation Wizard. Select the Custom
installation option to verify what will be installed. For help completing the
wizard, see the MATLAB Installation Guide. As you run the installation
wizard, note the following:

5-5

5 Server Management

• If you do not already have the License Manager installed, you must
install it. On the Installation Type dialog box, choose to perform a
Custom installation. Then, on the Product Selection dialog box, select
the License Manager for installation. By default, it is not selected for
installation.

• If you install the product using the internet, you will be taken to the
Licensing Center to complete the licensing process.

Download and Install the MATLAB Compiler Runtime
(MCR)
The MATLAB Compiler Runtime (MCR) is a standalone set of shared libraries
that enables the execution of compiled MATLAB applications or components
on computers that do not have MATLAB installed. When used together,
MATLAB Production Server and the MCR enable you to create and distribute
mathematical applications or software components quickly and securely.

Download and Install the latest version of the MATLAB Compiler
Runtime (MCR) from the Web, on the MATLAB Compiler Runtime page at
http://www.mathworks.com/products/compiler/mcr.

For more information about the MCR, including alternate methods
of installing it, see “Distributing MATLAB Code Using the MATLAB
Compiler Runtime (MCR)” in the MATLAB Compiler section of MathWorks
Documentation Center.

Compatibility Considerations for MATLAB Compiler Runtime
(MCR) and Deployed Components
In order to deploy a generic CTF archive created with the Deployment Tool,
you install a version of the MCR that is compatible with the version of
MATLAB you used to create your archive.

Run mps-setup to Set Location of MATLAB Compiler
Runtime (MCR)
Each server that you create with MATLAB Production Server has its own
configuration file that defines various server management criteria.

5-6

http://www.mathworks.com/products/compiler/mcr/
http://www.mathworks.com/products/compiler/mcr

Install MATLAB® Production Server™

The mps-setup command line wizard searches for MCR instances and sets
the default path to the MATLAB Compiler Runtime (MCR) for all server
instances you create with the product.

To run the command line wizard, do the following after first downloading
and performing the “MATLAB Compiler Runtime (MCR) Installation” on
page 5-14:

1 Ensure you have logged on with administrator privileges.

2 At the system command prompt, run mps-setup from the script folder.
Alternately, add the script folder to your system PATH environment
variable to run mps-setup from any folder on your system. The script
folder is located at $MPS_INSTALL\script, where $MPS_INSTALL is the
location in which MATLAB Production Server is installed. For example,
on Windows, the default location is: C:\Program Files\MATLAB\MATLAB
Production Server\ver\script\mps-setup.

ver is the version of MATLAB Production Server to use.

3 Follow the instructions in the command line wizard. The wizard will search
your system and display installed MCR instances.

4 Enter y to confirm or n to specify a default MCR for all server configurations
created with MATLAB Production Server.

If mps-setup cannot locate an installed MCR on your system, you will be
prompted to enter a path name to a valid instance.

Run mps-setup in Non-Interactive Mode for Silent Install
You can also run mps-setup without interactive command input for silent
installations.

To run mps-setup, specify the path name of the MCR as a command line
argument. For example, on Windows:

mps-setup "C:\Program Files\MATLAB\MATLAB Compiler
Runtime\mcrver"

mcrver is the version of the MCR to use.

5-7

5 Server Management

Disable Windows Interactive Error Reporting
(Optional)
If the system on which you are running MATLAB Production Server is not
monitored frequently, you may want to disable Windows Interactive Error
Reporting, using the DontShowUIWindows Error Reporting (WER) setting, to
avoid processing disruptions.

See WER Settings for Windows Development at
http://msdn.microsoft.com/en-us/library/windows/
desktop/bb513638(v=vs.85).aspx for complete information.

5-8

http://msdn.microsoft.com/en-us/library/windows/desktop/bb513638(v=vs.85).aspx

License Management for MATLAB® Production Server™

License Management for MATLAB Production Server
Complete instructions for installing License Manager can be found in the
MATLAB Installation Guide. See “License Manager Tasks” for information
on how to start License Manager.

In addition to following instructions in the License Center to obtain and
activate your license, do the following in order to set up and manage licensing
for MATLAB Production Server:

Specify or Verify License Server Options in Server
Configuration File
Specify or verify values for License Server options in the server configuration
file (main_config). You create a server by using the mps-new command.

Edit the configuration file for the server. Open the file
server_name/config/main_config and specify or verify parameter values
for the following options. See the comments in the server configuration file for
complete instructions and default values.

• --license — Configuration option to specify the license servers and/or
the license files. You can specify multiple license servers including port
numbers (port_number@license_server_name), as well as license files,
with one entry in main_config. List where you want the product to search,
in order of precedence, using semi-colons (;) as separators on Windows or
colons (:) as separators on Linux.

For example, on a Linux system, you specify this value for --license:

27000@hostA:/opt/license/license.dat:27001@hostB:./license.dat

The system searches these resources in this order:

1 27000@hostA: (hostA configured on port 27000)

2 /opt/license/license.dat (local license data file)

3 27001@hostB: (hostB configured on port 27001)

4 ./license.dat (local license data file)

5-9

5 Server Management

• --license-grace-period — The maximum length of time MATLAB
Production Server responds to HTTP requests, after license server
heartbeat has been lost. See FLEXlm® documentation for more on
heartbeats and related license terminology.

• --license-poll-interval — The interval of time that must pass, after
license server heartbeat has been lost and MATLAB Production Server
stops responding to HTTP requests, before license server is polled, to verify
and checkout a valid license. Polling occurs at the interval specified by
--license-poll-interval until license has been successfully checked-out.
See FLEXlm documentation for more on heartbeats and related license
terminology.

Verify Status of License Server using mps-status
When you enter an mps-status command, the status of the server and the
associated license is returned.

For detailed descriptions of these status messages, see “License Server Status
Information” on page 5-31.

Forcing a License Checkout Using mps-license-reset
Use the mps-license-reset server command to force MATLAB Production
Server to checkout a license. You can use this command at any time, providing
you do not want to wait for MATLAB Production Server to verify and checkout
a license at an interval established by a server configuration option such as
--license-grace-period or --license-poll-interval.

5-10

Server Creation

Server Creation

In this section...

“Prerequisites” on page 5-11

“Procedure” on page 5-11

“Create a Server” on page 5-12

“For More Information” on page 5-13

Prerequisites
Before creating a server, verify that you have completed .

Procedure
Before you can deploy your MATLAB code with MATLAB Production Server
software, you need to create a server instance to host your deployable archive.

A server instance is considered to be one unique configuration of the MATLAB
Production Server product. Each configuration has its own options file
(main_config) and set of diagnostic files.

To create a server configuration or instance, complete the following steps:

1 From the system command prompt, navigate to where you want to create
your server instance.

2 From the system prompt, enter the following command:

mps-new [path/]server_name [-v]

where:

• path— Path to the server instance and configuration you want to create

If you are creating a server instance in the current folder, you do not
need to specify a full path. Only specify the server name.

• server_name — Name of the server instance and configuration you
want to create

5-11

5 Server Management

• -v — Enables verbose output, giving you information and status about
each folder created in the server configuration

Upon successful completion of the command, MATLAB Production Server
software creates a new server instance.

Create a Server
This example shows how to create a new server instance with the MATLAB
Production Server software:

1 Select a folder where you want to create prod_server_1. For example,
choose the /tmp folder, off your root.

cd /tmp

2 Enter the following command:

mps-new prod_server_1 -v

mps-new creates a new server instance named prod_server_1 in /tmp.
Enabling the verbose (-v) option allows you to see the results of the
command as each folder in the hierarchy is built.

The command produces the following output:

prod_server_1/.mps-version...ok
prod_server_1/config/...ok
prod_server_1/config/main_config...ok
prod_server_1/endpoint/...ok
prod_server_1/auto_deploy/...ok
prod_server_1/.mps-socket/...ok
prod_server_1/log/...ok
prod_server_1/pid/...ok

For more information on the files created by mps-new, see “Server Diagnostic
Tools” on page 5-35.

Note Before using a server, you must start it. See “Server Startup” on page
5-27.

5-12

Server Creation

For More Information

For information about... See...

How to solve errors when creating
a server

“Server Troubleshooting” on page
5-34

The mps-new command mps-new command reference page
in the MATLAB Production Server
User’s Guide

Product installation

5-13

5 Server Management

MATLAB Compiler Runtime (MCR) Installation
If you already have the MATLAB Compiler Runtime (MCR) installed, skip
this step and “Configuration File Customization” on page 5-22.

Install the MATLAB Compiler Runtime (MCR)
Download and Install the latest version of the MATLAB Compiler
Runtime (MCR) from the Web, on the MATLAB Compiler Runtime page at
http://www.mathworks.com/products/compiler/mcr/.

For more information about the MCR, including alternate methods
of installing it, see “Distributing MATLAB Code Using the MATLAB
Compiler Runtime (MCR)” in the MATLAB Compiler section of MathWorks
Documentation Center.

5-14

http://www.mathworks.com/products/compiler/mcr/
http://www.mathworks.com/products/compiler/mcr/
http://www.mathworks.com/help/documentation-center.html
http://www.mathworks.com/help/documentation-center.html

Secure a Server

Secure a Server

In this section...

“Overview” on page 5-15

“Enabling Security” on page 5-15

“Configuring Client Authentication” on page 5-16

“Specifying Access to MATLAB Programs” on page 5-17

“Adjusting Security Protocols” on page 5-18

“Improving Start Up Time when Security is Activated” on page 5-19

“Security Configuration Reference” on page 5-19

Overview
MATLAB Production Server uses HTTPS to establish secure connections
between server instances and clients. The HTTPS layer provides
certificate-based authentication for both clients and server instances. It also
provides an encrypted data path between the clients and server instances.
The level of security provided by the HTTPS layer and the security protocols
it supports are configurable.

MATLAB Production Server also provides a certificate-based authorization
mechanism for restricting access to specific programs. Using this mechanism,
you can specify the MATLAB programs a client can access.

Enabling Security
To enable security you need to add the following to the server instance’s
configuration:

• an HTTPS port

• a valid certificate stored in a PEM formatted certificate chain

• a valid private key stored in PEM format

The following configuration excerpt configures a server instance to
accept secure connections on port 9920, use the certificate stored in

5-15

5 Server Management

./x509/my-cert.pem, and use the unencrypted private key stored in

./x509/my-key.pem.

...
--https 9920
--x509-cert-chain ./x509/my-cert.pem
--x509-private-key ./x509/my-key.pem
...

The default security settings allow all clients to access all of the programs
hosted by the server instance. The server instance does not authenticate the
clients nor does it perform any authorization. The default settings enable all
security protocols and enable all but the eNULL cipher suites.

Using an unencrypted private key is not recommended in production settings
since it is inherently insecure. To use an encrypted private key, specify the
passphrase for decrypting the private key in a file that is owner read only and
use the --x509-passphrase property to tell the server instance about it.

...
--https 9920
--x509-cert-chain ./x509/my-cert.pem
--x509-private-key ./x509/my-key.pem
--x509-passphrase ./x509/my-passphrase
...

Configuring Client Authentication
To ensure that only trusted client applications have access to a server
instance, configure the server to require client authentication. To do this:

1 Set the server instance’s --ssl-verify-peer-mode configuration property to
verify-peer-require-peer-cert.

2 Configure the server instance to use the system provided CA store, a server
specific CA store, or both.

The CA store used by the server instance are controlled by two configuration
properties:

• --x509-ca-file-store specifies a PEM formatted CA store to authenticate
clients.

5-16

Secure a Server

• --x509-use-system-store directs the server instance to use the system’s
CA store to authenticate clients.

Warning --x509-use-system-store does not work on Windows.

3 Optionally configure the server instance to respect any certificate revocation
lists(CRLs) in the CA store.

This behavior is specified by adding the --x509-use-crl property to the
server’s configuration. If this property is not specified, the server instance
will ignore the CRLs and potentially authenticate clients using expired, or
revoked, credentials.

Warning You must add a CRL list to the server’s CA store before
adding the -x509-use-crl property. If the the CA store does not
include a CRL list, the server will crash.

The following configuration excerpt configures a server instance to
authenticate clients using the system CA store and to respect CRLs:

...
--https 9920
--x509-cert-chain ./x509/my-cert.pem
--x509-private-key ./x509/my-key.pem
--x509-passphrase ./x509/my-passphrase
--ssl-verify-peer-mode verify-peer-require-cert
--x509-use-system-store
--x509-use-crl
...

Specifying Access to MATLAB Programs
By default, server instances allow all clients to access all hosted
MATLAB programs. You control this behavior using the server instance’s
--ssl-allowed-client configuration property. The --ssl-allowed-client
property specifies a comma separated list of client’s, identified its certificate’s
common name, that are allowed to access MATLAB programs. You also
use the property to list specific MATLAB programs that a client is allowed
to access.

5-17

5 Server Management

If the --ssl-allowed-client property is not specified, the server instance
does not restrict access to the hosted MATLAB programs. Once you add an
entry for the --ssl-allowed-client property, the server instance only
authorizes the listed clients to access the hosted MATLAB programs.

To only authorize client’s with the common names jim, judy, and ash to use
the MATLAB programs hosted on a server instance, you add the following
configuration excerpt:

--ssl-allowed-client jim,judy,ash

You can restrict access further by only authorizing specific clients to
have access to specific MATLAB programs. You do this by adding
:allowedPrograms to the value of the --ssl-allowed-client property.
allowedPrograms is a comma separated list of program names.

To allow clients with the common name jim access to all hosted programs,
allow clients with the common name judy access to the programs tail
and zap, and allow clients with the common name ash or joe access to the
programs saw and travel, you add the following configuration excerpt:

--ssl-allowed-client jim
--ssl-allowed-client judy:tail,zap
--ssl-allowed-client ash,joe:saw,travel

Adjusting Security Protocols
By default, MATLAB Production Server instances will allow connections
using SSLv2, SSLv3, and TLSv1. You can control the enabled protocols using
the --ssl-protocols property. When you include this property in a server
instance’s configuration, it specifies the protocols the instance can use.

To enable only SSLv3, you add the following configuration excerpt:

--ssl-protocols SSLv3

Because SSLv2 and TLSv1 are not included in the list, the server instance
does not enable the protocols.

You can similarly restrict the cipher suites used by the server instance using
the --ssl-ciphers property. Once the property is added to a server instance’s
configuration, the server instance will only use the listed cipher suites.

5-18

Secure a Server

To enable only high strength cipher suites, you add the following configuration
excerpt:

--ssl-ciphers HIGH

Improving Start Up Time when Security is Activated
When a server instance is configured to use HTTPS, it generates an ephemeral
DH key at start up. Generating the DH key at start up provides more security
than reading it from a file on disk. However, this can add a couple of minutes
to a server instance’s start up time.

If you need the server instance to start up without delay and are not concerned
about the loss of security, you can configure the server instance to read the
ephemeral DH key from a file. This is done using the --ssl-tmp-dh-param
configuration property. The --ssl-tmp-dh-param property specifies the file
storing the DH key in PEM format.

Security Configuration Reference

Property Description Default

--https Specifies the port
number used for the
secure connection.

--x509-private-key Specifies the path to the
private key used to load
the server’s certificates.
The private key must
be in PEM format.

--x509-passphrase Specifies the path to the
file containing the pass
phase used to encrypt
the private key. This
filemust be owner read
only.

5-19

5 Server Management

Property Description Default

--x509-cert-chain Specifies the path to
the server’s certificate
chain file. This
file contains the
server’s certificate
and any untrusted
certificates. This
property requires that
--x509-private-key
also be set.

--ssl-verify-peer-modeSpecifies if the server
requires the client to
provide a certificate for
authentication. Valid
values are:
• no-verify-peer

• verify-peer-require-peer-cert

no-verify-peer

--x509-ca-file-store Specifies the path to the
server’s CA (certificate
authority) store. This
file contains trusted
certificates that are
used to verify client
authenticity.

--x509-use-system-storeSpecifies that the
server should use the
host system’s CA store.
If this property is not
set, the server will use
the file specified by
--x509-ca-file-store.

Do not use the system’s
CA store.

--x509-use-crl Specifies if the server
uses the certificate
revocation list during
client authentication.

Do not use the
certificate revocation
list.

5-20

Secure a Server

Property Description Default

--ssl-allowed-client Specifies a list of clients
and the programs they
can access. The format
is client1,client2,
...:program1,program2
where the clients in
the list can access
the programs in the
list. If no program’s
are specified the listed
clients can access all
hosted programs.

Allow all clients to
access all programs.

--ssl-protocols Specifies a list of
allowed protocols.
Supported protocols
include:
• SSLv2

• SSLv3

• TLSv1

Allow all protocols.

--ssl-ciphers Specifies a list of
enabled cipher suites.
Special values include:
• ALL — Enable all
cipher suites except
for the eNULL
ciphers.

• HIGH — Enable all
high encryption
cipher suites.

ALL

--ssl-tmp-dh-param Specifies that path
to a pre-generated
ephemeral DH key.

Server auto-generates
an ephemeral DH key.

5-21

5 Server Management

Configuration File Customization

In this section...

“Prerequisites” on page 5-22

“Procedure” on page 5-22

“Specify the Installed MCR to the Server Instance” on page 5-23

“For More Information” on page 5-26

Prerequisites
Before customizing the server configuration file with the location of the
MATLAB Compiler Runtime (MCR), ensure you have:

• Created a server instance

• Installed the MATLAB Compiler Runtime

Procedure
Since the server interacts with the MCR to process client requests, you must
specify where the MCR is located before you can start a server.

In addition, you set other critical configuration options that determine
how a server hosts CTF archives and otherwise operates in a deployment
environment.

You do this by editing main_config, the server configuration file for the
server instance.

1 Navigate to the server instance you created. Open the top-most folder,
labeled with the server name.

2 In the config folder, open main_config with a text editor of your choice.

3 In main_config, find the string --mcr-root, the configuration file option
that designates the location of the MCR.

4 Specify the absolute path to the MCR, after entering one space after the
option --mcr-root.

5-22

Configuration File Customization

5 Save main_config and exit.

6 Run mps-restart to stop the server instance and start it with your
specified options.

Use mps-setup to Locate Installed MCRs and Set --mcr-root
You can also use the mps-setup command to locate installed instances of
the MATLAB Compiler Runtime (MCR) and specify the location of the MCR
to the server instance.

For more information see the mps-setup command reference page.

Note mps-setup only sets --mcr-root. It does not set other options in
main_config.

Specify the Installed MCR to the Server Instance
This example shows how to specify the installed location of the MATLAB
Compiler Runtime (MCR) to your server instance. See “MATLAB Compiler
Runtime (MCR) Installation” on page 5-14 for details about how to install
the MCR.

1 Navigate to /tmp/prod_server_1.

2 Open the folder labeled prod_server_1.

3 Open the folder labeled config.

4 Open main_config with a text editor of your choice.

Find the configuration file option --mcr-root in main_config. By default,
in a new server instance, the value of --mcr-root is:

m C R r O O T u N s E T

5 Modify the --mcr-root option default value to point to the installed MCR
you want to work with. For example:

--mcr-root C:\Program Files\MATLAB\MATLAB Compiler Runtime\vnnn

5-23

5 Server Management

Note You must specify the version number of the MCR (vnnn) in
--mcr-root. MCR versions you specify must be compatible with MATLAB
Production Server.

6 Save main_config and exit.

7 Run mps-restart to stop the server instance and start it with your
specified options. To restart prod_server_1 from a system command
prompt, enter the following:

mps-restart -C /tmp/prod_server_1

About the Server Configuration File (main_config)
To change any MATLAB Production Server parameters, edit the main_config
configuration file that corresponds to your specific server instance:

server_name/config/main_config

When editing main_config, remember these coding considerations:

• Each server has its own main_config configuration file.

• You enter only one configuration file parameter and related options per
line. Each configuration file parameter starts with two dashes (--).

• Any line beginning with a pound sign (#) is ignored as a comment.

• Lines of white space are ignored.

Information about each configuration file parameter is included in the
comments of each main_config file. The following are critical parameters to
set or verify when running a server.

Setting the Location of the MATLAB Compiler Runtime (MCR). Use
the --mcr-root parameter to specify the location of the MATLAB Compiler
Runtime (MCR) to the server instance.

5-24

Configuration File Customization

Setting Default Port Number for Client Requests. Use the --http
parameter to set the default port number on which the server listens for
client requests.

Setting Number of Available Workers. Use the --num-workers
parameter to set the number of concurrent MATLAB execution requests that
can be processed simultaneously.

See “Server Overview” on page 5-2 for more information.

Setting Number of Available Threads. Use the --num-threads parameter
to set the number of request-processing threads available to the master server
process.

See “Server Overview” on page 5-2 for more information.

Note For .NET Clients, the HTTP 1.1 protocol restricts the maximum
number of concurrent connections from a client to a server to two.

This restriction only applies when the client and server are connected
remotely. A local client and server connection has no such restriction.

To specify a higher number of connections than two for remote
connection, use the NET classes System.Net.ServicePoint and
System.Net.ServicePointManager to modify maximum concurrent
connections.

For example, to specify four concurrent connections, code the following:

ServicePointManager.DefaultConnectionLimit = 4;
MWClient client = new MWHttpClient(new MyConfig());
MPSClient mpsExample = client.CreateProxy(new Uri("http://user01:9910/mpsex

5-25

5 Server Management

For More Information

For information about... See...

Downloading and installing the
MCR

“MATLAB Compiler Runtime (MCR)
Installation” on page 5-14

Product installation

5-26

Server Startup

Server Startup

In this section...

“Prerequisites” on page 5-27

“Procedure” on page 5-27

“Start a Server” on page 5-28

“For More Information” on page 5-28

Prerequisites
Before attempting to start a server, verify that you have:

• Installed the MATLAB Compiler Runtime (MCR)

• Created a server

• Customized the server configuration file, main_config with the location of
the MCR or Run mps-setup to set the location of the MATLAB Compiler
Runtime (MCR)

Procedure
To start a server, complete the following steps:

1 Open a system command prompt.

2 Enter the following command:

mps-start [-C path/]server_name [-f]

where:

• -C path/— Path to the server instance you want to create. path should
end with the server name.

• server_name— Name of the server instance you want to start or stop.

• -f — Forces command to succeed, regardless or whether the server is
already started or stopped.

Upon successful completion of the command, the server instance is active.

5-27

5 Server Management

Note If needed, query the status of the server instance that you started to
verify the server is running.

Start a Server
This example shows how to start a server instance using the instance you
created previously. In this example, you start prod_server_1 from a location
other than the server instance folder (C:\tmp\prod_server_1).

1 Open a system command prompt.

2 Enter the following command to start prod_server_1:

mps-start -C \tmp\prod_server_1

prod_server_1 is now active and ready to receive requests.

For More Information

For information about... See...

Downloading and installing the
MCR

“Download and Install the MATLAB
Compiler Runtime (MCR)” on page
5-6

Solving errors when starting or
stopping a server

“Diagnose a Server Problem” on page
5-34 in the MATLAB Production
Server User’s Guide.

The mps-start command mps-start command reference page
in the MATLAB Production Server
User’s Guide.

Stopping the server with the
mps-stop command

mps-stop command reference page
in the MATLAB Production Server
User’s Guide.

5-28

Server Startup

For information about... See...

Verifying status of a server with the
mps-status command

mps-status command reference
page in the MATLAB Production
Server User’s Guide.

Product installation

5-29

5 Server Management

Share the Deployable CTF Archive
After you create the deployable archive, share it with clients of MATLAB
Production Server by copying it to your server, for hosting.

In order to share the deployable archive, a server must be created and started.

1 Locate your deployable archive in the for_redistribution_files_only
folder of your Deployment Tool project folder. It will be named
project_name.ctf.

2 Copy project_name.ctf to the \server_name\auto_deploy folder in your
server instance.

For example, if your server is named prod_server_1 and located in C:\tmp,
copy project_name.ctf to C:\tmp\prod_server_1\auto_deploy.

Note Once you deploy a MATLAB function using MATLAB Production
Server, any future changes made to your MATLAB function, after recompiling
with the Deployment Tool, are immediately available in the CTF archive that
resides in the auto_deploy folder.

5-30

Server Status Verification

Server Status Verification

In this section...

“Prerequisite” on page 5-31

“Procedure” on page 5-31

“Verify Status of a Server” on page 5-32

“For More Information” on page 5-33

Prerequisite
Before attempting to verify the status of a server instance, verify that you
have first created a server.

Procedure
To verify the status of a server instance, complete the following steps:

1 Open a system command prompt.

2 Enter the following command:

mps-status [-C path/]server_name

where:

• -C path/— Path to the server instance and configuration you want to
create. path should end with the server name.

• server_name— Name of the server instance and configuration you want
to start or stop.

Upon successful completion of the command, the server status displays.

License Server Status Information
In addition to the status of the server, mps-status also displays the status of
the license server associated with the server you are verifying.

Possible statuses and their meanings follow:

5-31

5 Server Management

This License Server Status
Message...

Means...

License checked out
The server is operating with a valid
license. The server is communicating
with the License Manager, and the
proper number of license keys are
checked out..

WARNING: lost connection
to license server -
request processing
will be disabled
at time unless connection to
license server is restored

The server has lost communication
with the License Manager, but the
server is still fully operational and
will remain operational until the
specified time.
At time, if connectivity to the license
server has not been restored, request
processing will be disabled until
licensing is reestablished.

ERROR: lost connection
to license server - request
processing disabled

The server has lost communication
with the License Manager for a
period of time exceeding the grace
period.
Request processing has been
suspended, but the server
actively attempts to reestablish
communication with the License
Manager until it succeeds, at which
time normal request processing
resumes.
For information about grace periods,
see “Specify or Verify License Server
Options in Server Configuration
File” on page 5-9.

Verify Status of a Server
This example shows how to verify the status of the server instance you started
in the previous example.

5-32

Server Status Verification

In this example, you verify the status of prod_server_1, from a location other
than the server instance folder (C:\tmp\prod_server_1).

1 Open a system command prompt.

2 To verify prod_server_1 is running, enter this command:

mps-status -C \tmp\prod_server_1

If prod_server_1 is running, the following status is displayed:

\tmp\prod_server_1 STARTED
license checked out

This output confirms prod_server_1 is running and the server is operating
with a valid license.

For more information on the STOPPED status and the mps-stop command, see
mps-stop and mps-restart

For more information about license status messages, see “License Server
Status Information” on page 5-31.

For More Information

For information about.... See....

The mps-status command mps-status command reference
page in the MATLAB Production
Server User’s Guide.

Stopping the server with the
mps-stop command

mps-stop command reference page
in the MATLAB Production Server
User’s Guide.

Restarting the server with the
mps-restart command

mps-restart command reference
page in the MATLAB Production
Server User’s Guide.

5-33

5 Server Management

Server Troubleshooting

In this section...

“Procedure” on page 5-34

“Diagnose a Server Problem” on page 5-34

“Server Diagnostic Tools” on page 5-35

“Common Error Messages and Resolutions” on page 5-38

“For More Information” on page 5-39

Procedure
To diagnose a problem with a server instance or configuration of MATLAB
Production Server, do the following, as needed:

• Check the logs for warnings, errors, or other informational messages.

• Check Process Identification Files (PID files) for information relating to
problems with MCR worker processes.

• Check Endpoint Files for information relating to problems relating to the
server’s bound external interfaces — for example, a problem connecting
a client to a server.

• Use server diagnostic tools, such as mps-which, as needed.

Diagnose a Server Problem
This example shows a typical diagnostic procedure you might follow to solve a
problem starting server prod_server_x.

After you issue the command:

mps-start prod_server_x

from within the server instance folder (prod_server_x), you get the following
error:

Server process exited with return code: 4
(check logs for more information)
Error while waiting for server to start: The I/O operation

5-34

Server Troubleshooting

has been aborted because of either a thread exit
or an application request

To solve this issue, you might check the log files for more detailed messages,
as follows:

1 Navigate to the server instance folder (prod_server_x) and open the log
folder.

2 Open main.err with any text editor. Note the following message listed
under Server startup error:

Dynamic exception type: class std::runtime_error
std::exception::what: bad MCR installation:
C:\Program Files\MATLAB\MATLAB Compiler Runtime\v717
(C:\Program Files\MATLAB\MATLAB Compiler Runtime\v717\bin\
win64\mps_worker_app could not be found)

3 The message indicates the installation of the MATLAB Compiler Runtime
(MCR) is incomplete or has been corrupted. To solve this problem, reinstall
the MCR.

Server Diagnostic Tools
Each server instance contains three sets of diagnostic files to help you
determine and solve problems with the server and associated processes

Log Files
Each server writes a log file containing data from both the main server
process, as well as the workers, named server_name/log/main.log. You can
change the primary log folder name from the default value (log) by setting
the option --log-root in main_config.

The primary log folder contains the main.log file, as well as a symbolic link
to this file with the auto-generated name of main_date_fileID.log.

The stdout stream of the main server process is captured as log/main.out.

The stderr stream of the main server process is captured as log/main.err.

5-35

5 Server Management

Log Retention and Archive Settings. Log data is written to the server’s
main.log file for as long as a specific server instance is active, or until
midnight. When the server is restarted, log data is written to an archive log,
located in the archive log folder specified by --log-archive-root.

You can set parameters that define when main.log is archived using the
following options in each server’s main_config file.

• --log-rotation-size — When main.log reaches this size, the active
log is written to an archive log (located in the folder specified by
--log-archive-root).

• --log-archive-max-size — When the combined size of all files in the
archive folder (location defined by --log-archive-root) reaches this
limit, archive logs are purged until the combined size of all files in the
archive folder is less than --log-archive-max-size. Oldest archive logs
are deleted first.

Specify values for these options using the following units and notations:

Represent these units
of measure...

Using this notation... Example

Byte b 900b

Kilobyte (1024 bytes) k 700k

Megabytes (1024
kilobytes)

m 40m

Gigabytes (1024
megabytes)

g 10g

Terabytes (1024
gigabytes)

t 2t

Petabytes (1024
terabytes)

p 1p

5-36

Server Troubleshooting

Note The minimum value you can specify for --log-rotation-size is
1 megabyte.

On Windows 32-bit systems, values larger than 232 bytes are not supported.
For example, specifying 5g is not valid on Windows 32-bit systems.

Best Practices for Log Management. Use these recommendations as
a guide when defining values for the options listed in “Log Retention and
Archive Settings” on page 5-36.

• Avoid placing --log-root and --log-archive-root on different physical
file systems.

• Place log files on local drives, not on network drives.

• Send MATLAB output to stdout. Develop an appropriate, consistent
logging strategy following best MATLAB coding practices. See MATLAB
Programming Fundamentals for guidelines.

Setting Log File Detail Levels. Each log level provides different levels
of information for troubleshooting. For complete information on all logging
levels and what details they provide, see the comments in the main_config
file. Before you call support, you should set logging levels to trace.

Process Identification Files (PID Files)
Each process that the server runs generates a Process Identification File (PID
File) in the folder identified as pid-root in main_config.

The main server PID file is main.pid; for each MCR Worker process, it is
worker-n.pid, where n is the unique identifier of the worker.

PID files are automatically deleted when a process exits.

Endpoint Files
Endpoint files are generated to capture information about the server’s bound
external interfaces. The files are created when you start a server instance
and deleted when you stop it.

5-37

5 Server Management

server_name/endpoint/http contains the IP address and port of the clients
connecting to the server. This information can be useful in the event that zero
(0) is specified in main_config, indicating that the server bind to a free port.

Common Error Messages and Resolutions
This section lists common troubleshooting scenarios, including error messages
and typical resolutions:

(404) Not Found

Commonly caused by requesting a component that is not deployed on the
server, or trying to call a function that is not exported by the given component.

Verify that the name of the CTF archive specified in your Uri is the same as
the name of the CTF archive hosted in your auto_deploy folder.

Error: Bad MCR Instance

Common causes of this message include:

• You are not properly qualifying the path to the MCR. You must include the
version number. For example, you need to specify:

C:\Program Files\MATLAB\MATLAB Compiler Runtime\vn.n

not

C:\Program Files\MATLAB\MATLAB Compiler Runtime

Error: Server Instance not Specified

MATLAB Production Server can’t find the server you are specifying.

Ensure you are either entering commands from the folder containing the
server instance, or are using the -C command argument to specify a precise
location of the server instance.

For example, if you created server_1 in C:\tmp\server_1, you would issue
the mps-start command from within that folder to avoid specifying a path
with the -C argument:

5-38

Server Troubleshooting

cd c:\tmp\server_1
mps-start server_1

For more information, see “Server Startup” on page 5-27.

Error: invalid target host or port

The port number specified has not been properly defined to your computer.
Define a valid port and retry the command.

Error: HTTP error: HTTP/x.x 404 Component not found

This error can be caused by a number of reasons. Consult the “Log Files” on
page 5-35 for further details on the precise cause of the problem.

For More Information

For information about.... See....

The mps-status command mps-status command reference
page in the MATLAB Production
Server User’s Guide

Displaying which server has
allocated a client port with the
mps-which command

mps-which command reference page
in the MATLAB Production Server
User’s Guide

5-39

5 Server Management

5-40

6

Client Programming

• “MATLAB® Production Server™ Examples Available on MATLAB Central”
on page 6-2

• “Create a MATLAB® Production Server™ Client” on page 6-3

• “Unsupported MATLAB Data Types for Client and Server Marshaling”
on page 6-4

6 Client Programming

MATLAB Production Server Examples Available on MATLAB
Central

Additional Client examples for MATLAB Production Server are available on
MATLAB Central at http://www.mathworks.com/matlabcentral.

6-2

http://www.mathworks.com/matlabcentral/
http://www.mathworks.com/matlabcentral/

Create a MATLAB® Production Server™ Client

Create a MATLAB Production Server Client
To create a MATLAB Production Server client:

1 Obtain the client run-time files installed in in $MPS_INSTALL/client.

2 In consultation with the MATLAB programmer, agree on the MATLAB
function signatures that comprise the services in the application.

See the prerequisites section in and for specific requirements of each client.

3 Configure your system with the appropriate software for working with Java
or .NET.

4 Write a the appropriate Java or .NET interface for the MATLAB functions the
client uses.

5 Write a the Java or .NET code to instantiate a proxy to a MATLAB Production
Server instance and call the MATLAB functions.

a Create a dynamic proxy for communicating with the service hosted by
MATLAB Production Server software.

b Declare and throw exceptions as required.

c Free system resources using the close method of MWClient, after making
needed calls to your application.

6-3

6 Client Programming

Unsupported MATLAB Data Types for Client and Server
Marshaling

These data types are not supported for marshaling between MATLAB
Production Server server instances and clients:

• MATLAB function handles

• Complex (imaginary) data

• Sparse arrays

Note See Appendix A, “Data Conversion Rules” for a complete list of
conversion rules for supported MATLAB, .NET, and Java types.

6-4

7

Java Client Programming

• “Java Client Coding Best Practices” on page 7-2

• “Bond Pricing Tool with GUI for Java Client” on page 7-8

• “Accessing Secure Programs Using HTTPS” on page 7-14

• “Code Multiple Outputs for Java Client” on page 7-19

• “Code Variable-Length Inputs and Outputs for Java Client” on page 7-21

• “Marshal MATLAB Structures (Structs) in Java” on page 7-23

• “Data Conversion with Java and MATLAB Types” on page 7-31

7 Java Client Programming

Java Client Coding Best Practices
When you write Java interfaces to invoke MATLAB code, remember these
considerations:

• The method name exposed by the interface must match the name of the
MATLAB function being deployed.

• The method must have the same number of inputs and outputs as the
MATLAB function.

• The method input and output types must be convertible to and from
MATLAB.

• If you are working with MATLAB structures, remember that the field
names are case sensitive and must match in both the MATLAB function
and corresponding user-defined Java type.

• The name of the interface can be any valid Java name.

• Your code should support exception handling.

Java Client Prerequisites
Complete the following steps to prepare your MATLAB Production Server
Java development environment.

1 Install a Java IDE of your choice. Follow instructions on the Oracle Web
site for downloading Java, if needed.

2 Add mps_client.jar (located in $MPS_INSTALL\client\java) to your
Java CLASSPATH and Build Path. This JAR file is sometimes defined in
separate GUIs, depending on your IDE.

Generate one generic CTF archive in your server’s auto_deploy folder
for each MATLAB application you plan to deploy. For information about
creating a generic CTF archive with the Deployment Tool, see .

Your server’s main_config file should point to where MATLAB or your
MCR instance is installed (using mcr-root).

3 The server hosting your deployable CTF archive must be running.

7-2

http://www.oracle.com
http://www.oracle.com/us/technologies/java/index.html

Java Client Coding Best Practices

Manage Client Lifecycle
A single Java client connects to one or more servers available at various
URLs. Even though you create multiple instances of MWHttpClient, one
instance is capable of establishing connections with multiple servers.

Proxy objects communicate with the server until the close method of that
instance is invoked.

For a locally scoped instance of MWHttpClient, the Java client code looks
like the following:

Locally Scoped Instance

MWClient client = new MWHttpClient();
try{

// Code that uses client to communicate with the server
}finally{

client.close();
}

When using a locally scoped instance of MWHttpClient, tie it to a servlet.

When using a servlet, initialize the MWHttpClient inside
the HttpServlet.init() method, and close it inside the
HttpServlet.destroy() method, as in the following code:

Servlet Implementation

public class MPSServlet extends HttpServlet{
private final MWClient client;

public void init(ServletConfig config) throws ServletException{
client = new MWHttpClient();

}

protected void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException,java.io.IOException{

// Code that uses client to communicate with the server
}

7-3

7 Java Client Programming

public void destroy(){
client.close();

}
}

7-4

Java Client Coding Best Practices

Handling Java Client Exceptions
The Java interface must declare checked exceptions for the following errors:

Java Client Exceptions

Exception Reason for Exception Additional Information

com.mathworks.mps.
client.MATLABException

A MATLAB error occurred when
a proxy object method was
executed.

The exception provides the
following:
• MATLAB Stack trace

• Error ID

• Error message

java.io.IOException • A network-related failure has
occurred.

• The server returns an HTTP
error of either 4xx or 5xx.

Use java.io.IOException to
handle an HTTP error of 4xx or
5xx in a particular manner.

Managing System Resources
A single Java client connects to one or more servers available at different
URLs. Instances of MWHttpClient can communicate with multiple servers.

All proxy objects, created by an instance of MWHttpClient, communicate with
the server until the close method of MWHttpClient is invoked.

Call close only if you no longer need to communicate with the server and
you are ready to release the system resources. Closing the client terminates
connections to all created proxies.

Configure Client Timeout Value for Connection with
a Server
To prevent client and server deadlocks and to ensure client stability, consider
setting a timeout parameter when the client is connected with the server
and the server becomes unresponsive.

7-5

7 Java Client Programming

To set a timeout parameter in milliseconds, implement interface
MWHttpClientConfig in your client code. Use the overloaded constructor of
MWHttpClient, which takes in an instance of MWHttpClientConfig.

Configure the following properties:

• Interruptibility— Determines if a MATLAB function call may interrupt
while a client is waiting for a response from the server.

- true — Allow interruptions

- false — Do not allow interruptions

• Timeout — Time in milliseconds that the client is to wait for a response
from the server before timing out.

• Maximum connections per address — The maximum amount
of connections supported by one IP address. Default value is
system-dependent—new connections are created for an address as long as
it is supported by the system.

For example, to configure the client to:

• Allow interruptions from MATLAB function calls

• Timeout after no response from the server after 1.66 minutes (100000
milliseconds)

• Support a maximum of 10 connections per address

add the following to your client code.

MWClient client = new MWHttpClient(new MWHttpClientConfig(){
public int getMaxConnectionsPerAddress(){

return 10;
}

public long getTimeOutMs(){
return 10000;

}

public boolean isInterruptible(){
return true;

7-6

Java Client Coding Best Practices

}
});

Configuring Number of Reusable Connections
You can configure the number of reusable connections to the server in two
ways:

• Use the default HTTP implementation (using the default construction
of MWHttpClient without any input). Set the system property
http.maxConnections. The value assigned to this property establishes
the number of connections to reuse.

• Create MWHttpClient by passing an instance of MWHttpClientConfig.
Set the Interuptibility property to true and set the number of maximum
connections per address. This restricts the pool of open connections to the
maximum value set.

Where to Find the Javadoc
The API doc for the Java client is installed in $MPS_INSTALL/client.

7-7

7 Java Client Programming

Bond Pricing Tool with GUI for Java Client
This example shows an application that calculates a bond price from a simple
formula.

You run this example by entering the following known values into a simple
graphical interface:

• Coupon payment — C

• Number of payments — N

• Interest rate — i

• Value of bond or option at maturity — M

The application calculates price (P) based on the following equation:

P = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N

Objectives
The Bond Pricing Tool demonstrates the following features of MATLAB
Production Server:

• Deploying a simple MATLAB function with a fixed number of inputs and
a single output

• Deploying a MATLAB function with a simple GUI front-end for data input

• Using dispose() to free system resources

Step 1: Write MATLAB Code
Implement the Bond Pricing Tool in MATLAB, by writing the following code.
Name the code pricecalc.m.

Sample code is available in
MPS_INSTALL\client\java\examples\BondPricingTool\MATLAB.

function price = pricecalc(value_at_maturity, coupon_payment,...
interest_rate, num_payments)

C = coupon_payment;

7-8

Bond Pricing Tool with GUI for Java Client

N = num_payments;
i = interest_rate;
M = value_at_maturity;

price = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N;

end

Step 2: Create a Deployable CTF Archive with the
Library Compiler App
To create the deployable archive for this example:

1 From MATLAB, select the Library Compiler App.

2 In the Application Type list, select Generic CTF.

3 In the Exported Functions field, add pricecalc.m.

pricecalc.m is located in
MPS_INSTALL\client\java\examples\BondPricingTool\MATLAB.

4 Under Application Information, change pricecalc to BondTools.

5 Click Package.

The generated deployable archive, BondTools.ctf is located in the
for_redistribution_files_only of the project’s folder.

Step 3: Share the Deployable CTF Archive on a Server

1 Download the MATLAB Compiler Runtime, if needed, at
http://www.mathworks.com/products/compiler/mcr. See “MATLAB
Compiler Runtime (MCR) Installation” on page 5-14 for more information.

2 Create a server using mps-new. See “Server Creation” on page 5-11 for
more information.

3 If you have not already done so, specify the location of the MATLAB
Compiler Runtime (MCR) to the server by editing the server configuration

7-9

http://www.mathworks.com/products/compiler/mcr

7 Java Client Programming

file, main_config and specifying a path for --mcr-root. See “Configuration
File Customization” on page 5-22 for details.

4 Start the server using mps-start and verify it is running with mps-status.

5 Copy the BondTools.ctf file to the auto_deploy folder on the server for
hosting. See for complete details.

Step 4: Create the Java Client Code
Create a compatible client interface and define methods in Java to match
MATLAB function pricecalc.m, hosted by the server as BondTools.ctf,
using the guidelines in this section.

Additional Java files are also included that are typical of a
standalone application. You can find the example files in
MPS_INSTALL\client\java\examples\BondPricingTool\Java.

This Java code... Provides this functionality...

BondPricingTool.java Runs the calculator application. The variable
values of the pricing function are declared in
this class.

BondTools.java Defines pricecalc method interface, which
is later used to connect to a server to invoke
pricecalc.m

BondToolsFactory.java Factory that creates new instances of
BondTools

BondToolsStub.java Java class that implements a dummy
pricecalc Java method. Creating a stub
method is a technique that allows for
calculations and processing to be added to the
application at a later time.

BondToolsStubFactory.java Factory that returns new instances of
BondToolsStub

7-10

Bond Pricing Tool with GUI for Java Client

This Java code... Provides this functionality...

RequestSpeedMeter.java Displays a GUI interface and accepts inputs
using Java Swing classes

ServerBondToolsFactory.java Factory that creates new instances of
MWHttpClient and creates a proxy that
provides an implementation of the BondTools
interface and allows access to pricecalc.m,
hosted by the server

When developing your Java code, note the following essential tasks, described
in the sections that follow. For more information about clients coding basics
and best practices, see .

This documentation references specific portions of the
client code. You can find the complete Java client code in
MPS_INSTALL\client\java\examples\BondPricingTool\Java.

Declare Java Method Signatures Compatible with MATLAB
Functions You Deploy
To use the MATLAB functions you defined in “Step 1: Write MATLAB Code”
on page 7-8, declare the corresponding Java method signature in the interface
BondTools.java:

interface BondTools {
double pricecalc (double faceValue,

double couponYield,
double interestRate,
double numPayments)

throws IOException, MATLABException;
}

This interface creates an array of primitive double types, corresponding to the
MATLAB primitive types (Double, in MATLAB, unless explicitly declared)
in pricecalc.m. A one to one mapping exists between the input arguments
in both the MATLAB function and the Java interface The interface specifies
compatible type double. This compliance between the MATLAB and Java
signatures demonstrates the guidelines listed in .

7-11

7 Java Client Programming

Instantiate MWClient, Create Proxy, and Specify Deployable
CTF Archive
In the ServerBondToolsFactory class, perform a typical MATLAB Production
Server client setup:

1 Instantiate MWClient with an instance of MWHttpClient:

...

private final MWClient client = new MWHttpClient();

2 Call createProxy on the new client instance. Specify port number (9910)
and the CTF archive name (BondTools) the server is hosting in the
auto_deploy folder:

...

public BondTools newInstance () throws Exception

{

return client.createProxy(new URL("http://user1.dhcp.mathworks.com:9910/BondTools"),

BondTools.class);

}

...

Use dispose() Consistently to Free System Resources
This application makes use of the Factory pattern to encapsulate creation of
several types of objects.

Any time you create objects—and therefore allocate resources—ensure you
free those resources using dispose().

For example, note that in ServerBondToolsFactory.java, you dispose of
the MWHttpClient instance you created in “Instantiate MWClient, Create
Proxy, and Specify Deployable CTF Archive” on page 7-12 when it is no longer
needed.

Additionally, note the dispose() calls to clean up the factories in
BondToolsStubFactory.java and BondTools.java.

7-12

Bond Pricing Tool with GUI for Java Client

Step 5: Build the Client Code and Run the Example
Before you attempt to build and run your client code, ensure that you have
done the following:

• Added mps_client.jar ($MPS_INSTALL\client\java) to your Java
CLASSPATH and Build Path.

• Copied your deployable CTF archive to your server’s auto_deploy folder.

• Modified your server’s main_config file to point to where your MCR is
installed (using mcr-root).

• Started your server and verified it is running.

When you run the calculator application, you should see the following output:

7-13

7 Java Client Programming

Accessing Secure Programs Using HTTPS

In this section...

“Overview” on page 7-14

“Configuring the Client’s Environment for SSL” on page 7-14

“Establishing an HTTPS Connection” on page 7-15

“Advanced Security Configuration” on page 7-16

Overview
Connecting to a MATLAB Production Server instance over HTTPS provides
a secure channel for executing MATLAB functions. To establish an HTTPS
connection with a MATLAB Production Server instance:

1 Ensure that the server is configured to use HTTPS.

2 Install the required credentials on the client system.

3 Configure the client’s Java environment to use the credentials.

4 Create the program proxy using the program’s https:// URL.

MATLAB Production Server’s Java client API also provides:

• hooks for providing your own HostnameVerifier implementation

• hooks for implementing server authorization beyond that provided by
HTTPS

Configuring the Client’s Environment for SSL
Use keytool to manage the key store and trust stores on the client machine.

At a minimum the client requires the server’s root CA (Certificate Authority)
in its truststore.

If the client needs to connect to a server that requires client-side
authentication, it also needs a signed certificate in its key store.

7-14

Accessing Secure Programs Using HTTPS

For information on using keytool see Oracle’s keytool documentation.

Establishing an HTTPS Connection
You can create a secure proxy connection with a MATLAB Production Server
instance by using the https:// URL for the desired program:

MWClient client = new MWHttpClient();
URL sslURL = new URL("https://hostname:port/myCTF");
MyCTFProxy sslProxy = client.createProxy(sslURL, MyCTFProxy.class);

The sslProxy object will use the default Java trust store, stored in
JAVA_HOME\lib\security\cacerts, to perform the HTTPS server
authentication. If the server requests client authentication, the HTTPS
handshake will fail because the default SSLContext object created by the JRE
does not provide a key store.

To enable your client to connect with a server instance requiring client
authentication, you set the key store location and password using Java
system properties:

System.setProperty("javax.net.ssl.keystore", "PATH_TO_KEYSTORE");
System.setProperty("javax.net.ssl.keystorePassword", "keystore_pass");
MWClient client = new MWHttpClient();
URL sslURL = new URL("https://hostname:port/myfun");
MyCTFProxy sslProxy = client.createProxy(sslURL,
MyCTFProxy.class);

To use a non-default location for the client trust store, you set the trust store
location and password using Java system properties:

System.setProperty("javax.net.ssl.truststore", "PATH_TO_TRUSTSTORE");
System.setProperty("javax.net.ssl.truststorePassword", "truststore_pass");
MWClient client = new MWHttpClient();
URL sslURL = new URL("https://hostname:port/myfun");
MyCTFProxy sslProxy = client.createProxy(sslURL, MyCTFProxy.class);

To use a custom SSLContext implementation, add a custom HostnameVerifier
implementation, or use the MATLAB Production Server Java API’s server
authorization, you must provide a custom implementation of the MWSSLConfig
interface. See “Advanced Security Configuration” on page 7-16.

7-15

http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

7 Java Client Programming

Advanced Security Configuration

• “SSL API Configuration” on page 7-16

• “Override Default Hostname Verification” on page 7-16

• “Use Additional Server Authentication” on page 7-17

SSL API Configuration
The Java API uses an MWSSLConfig object to get the information it needs
to use HTTPS and perform the additional server authorization. The
MWSSLConfig interface has three methods:

• getSSLContext() — Returns the SSLContext object

• getHostnameVerifier()— Returns the HostnameVerifier object to use if
HTTPS hostname verification fails

• getServerAuthorizer()— Returns the MWSSLServerAuthorizer object to
perform server authorization based on the server’s certificate

The Java API provides a default MWSSLConfig implementation,
MWSSLDefaultConfig, which it uses when no SSL configuration is passed
to the MWHTTPClient constructor. The MWSSLDefaultConfig object is
implemented such that:

• getSSLContext() returns the default SSLContext object created by the
JRE

• getHostnameVerifier() returns a HostnameVerifier implementation
that always returns false. If the HTTPS hostname verification fails, this
will not override the HTTPS layer’s decision.

• getServerAuthorizer() returns a MWSSLServerAuthorizer
implementation that authorizes all MATLAB Production Server instances.

Override Default Hostname Verification
As part of the SSL handshake, the HTTPS layer attempts to match the
hostname in the provided URL to the hostname provided in the server’s
certificate. If the two hostnames do not match, the HTTPS layer calls the
HostnameVerifier.verify() method as an additional check. The return

7-16

Accessing Secure Programs Using HTTPS

value of the HostnameVerifier.verify()method determines if the hostname
is verified.

The implementation of the HostnameVerifier.verify() method provided by
the MWSSLDefaultConfig object always returns false. The result is that if
the hostname in the URL and the hostname in the server certificate do not
match, the HTTPS handshake fails.

To use a hostname verification scheme that is more robust, you can
extend the MWSSLDefaultConfig class to return an implementation of
HostnameVerifier.verify() that uses custom logic. For example, if you only
wanted to generate one certificate for all of the servers on which MATLAB
Production Server instances run, you could specify MPS for the certificate’s
hostname. Then your implementation of HostnameVerifier.verify()
returns true if the certificate’s hostname is MPS.

public class MySSLConfig extends MWSSLDefaultConfig {
public HostnameVerifier getHostnameVerifier() {

return new HostNameVerifier() {
public boolean verify(String s, SSLSession sslSession) {

if (sslSession.getPeerHost().equals("MPS"))
return true;

else
return false;

}
}

}
}

For more information on HostnameVerify see Oracle’s Java Documentation.

Use Additional Server Authentication
After the HTTPS layer establishes a secure connection, a client can
perform an additional authentication step before sending requests to a
server. This additional authentication is performed by an implementation
of the MWSSLServerAuthorizer interface. An MWSSLSServerAuthorizer
implementation performs two checks to authorize a server:

7-17

http://docs.oracle.com/javase/6/docs/api/javax/net/ssl/HostnameVerifier.html

7 Java Client Programming

• isCertificateRequired() determines if server’s must present a certificate
for authorization. If this returns true and the server has not provided a
certificate, the client does not authorize the server.

• authorize(Certificate serverCert) uses the server’s certificate to
determine if the client authorizes the server to process requests.

The MWSSLSServerAuthorizer implementation returned by the
MWSSLDefaultConfig object authorizes all servers without performing any
checks.

To use server authentication extend the MWSSLDefaultConfig class and
override the implementation of getServerAuthorizer() to return a
MWSSLSServerAuthorizer implementation that does perform authorization
checks.

7-18

Code Multiple Outputs for Java Client

Code Multiple Outputs for Java Client
MATLAB allows users to write functions that return multiple outputs.

For example, consider this MATLAB function signature:

function [out_double_array, out_char_array] =
multipleOutputs (in1_double_array, in2_char_array)

In the MATLAB signature, multipleOutputs has two outputs
(out_double_array and out_char_array) and two inputs (in1_double_array
and a in2_char_array, respectively)—a double array and a char array.

In order to call this function from Java, the interface in the client program
must specify the number of outputs of the function as part of the function
signature.

The number of expected output parameters in defined as type integer (int)
and is the first input parameter in the function.

In this case, the matching signature in Java is:

public Object[] multipleOutputs(int num_args, double[]
in1Double, String in2Char);

where num_args specifies number of output arguments returned by the
function. All output parameters are returned inside an array of type Object.

Note When coding multiple outputs, if you pass an integer as the first input
argument through a MATLAB function, you must wrap the integer in a
java.lang.Integer object.

Note the following coding best practices illustrated by this example:

7-19

7 Java Client Programming

• Both the MATLAB function signature and the Java method signature
using the name multipleOutputs. Both signatures define two inputs and
two outputs.

• MATLAB Java interface supports direct conversion from Java double array
to MATLAB double array and from Java string to MATLAB char array. For
more information, see “Conversion of Java Types to MATLAB Types” on
page A-2 and “Conversion of MATLAB Types to Java Types” on page A-4.

For more information, see .

7-20

Code Variable-Length Inputs and Outputs for Java Client

Code Variable-Length Inputs and Outputs for Java Client
MATLAB supports functions with both variable number of input arguments
(varargin) and variable number of output arguments (varargout).

MATLAB Production Server Java client supports the ability to work with
variable-length inputs (varargin) and outputs (varargout). varargin
supports one or more of any data type supported by MATLAB. See the
MATLAB Function Reference for complete information on varargin and
varargout.

For example, consider this MATLAB function:

function varargout = vararginout(double1, char2, varargin)

In this example, the first input is type double (double1) and the second input
type is a char (char2). The third input is a variable-length array that can
contain zero, or one or more input parameters of valid MATLAB data types.

The corresponding client method signature must include the same number of
output arguments as the first input to the Java method.

Therefore, the Java method signature supported by MATLAB Production
Server Java client, for the varargout MATLAB function, is as follows:

public Object[] vararginout(int nargout, double in1, String in2, Object... vararg);

In the vararginout method signature, you specify equivalent Java types
for in1 and in2.

The variable number of input parameters is specified in Java as Object...
vararg.

The variable number of output parameters is specified in Java as return
type Object[].

Note the following coding best practices illustrated by this example:

• Both the MATLAB function signature and the Java method signature using
the name vararginout. Both signatures define two inputs and two outputs.

7-21

7 Java Client Programming

• MATLAB Java interface supports direct conversion from Java double array
to MATLAB double array and from Java string to MATLAB char array. For
more information, see “Conversion of Java Types to MATLAB Types” on
page A-2 and “Conversion of MATLAB Types to Java Types” on page A-4.

7-22

Marshal MATLAB Structures (Structs) in Java

Marshal MATLAB Structures (Structs) in Java
Structures (or structs) are MATLAB arrays with elements accessed by textual
field designators.

Structs consist of data containers, called fields. Each field stores an array of
some MATLAB data type. Every field has a unique name.

A field in a structure can have a value compatible with any MATLAB data
type, including a cell array or another structure.

In MATLAB, a structure is created as follows:

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

This code creates a scalar structure (S) with three fields:

S =
name: 'Ed Plum'
score: 83
grade: 'B+'

A multidimensional structure array can be created by inserting additional
elements:

S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';

In this case, a structure array of dimensions (1,2) is created. Structs with
additional dimensions are also supported.

Since Java does not natively support MATLAB structures, marshaling structs
between the server and client involves additional coding.

7-23

7 Java Client Programming

Marshaling a Struct Between Client and Server
MATLAB structures are ordered lists of name-value pairs. You represent
them in Java with a class using fields consisting of the same case-sensitive
names.

The Java class must also have public get and set methods defined for each
field. Whether or not the class needs both get and set methods depends on
whether it is being used as input or output, or both.

Following is a simple example of how a MATLAB structure can be marshaled
between Java client and server.

In this example, MATLAB function sortstudents takes in an array of
structures (see “Marshal MATLAB Structures (Structs) in Java” on page
7-23 for details).

Each element in the struct array represents different information about a
student. sortstudents sorts the input array in ascending order by score
of each student, as follows:

function sorted = sortstudents(unsorted)

% Receive a vector of students as input

% Get scores of all the students

scores = {unsorted.score};

% Convert the cell array containing scores into a numeric array or doubles

scores = cell2mat(scores);

% Sort the scores array

[s i] = sort(scores);

% Sort the students array based on the sorted scores array

sorted = unsorted(i);

Note Even though this example only uses the scores field of the input
structure, you can also work with name and grade fields in a similar manner.

You compile sortstudents into a deployable CTF archive (scoresorter.ctf)
using the Deployment Tool (see for details) and make it available on the server
at http://localhost:9910/scoresorter for access by the Java Client (see).

7-24

Marshal MATLAB Structures (Structs) in Java

Before defining the Java interface required by the client, define the MATLAB
structure, Student, using a Java class.

Student declares the fields name, score and grade with appropriate types. It
also contains public get and set functions to access these fields.

Java Class Student

public class Student{

private String name;
private int score;
private String grade;

public Student(){
}

public Student(String name, int score, String grade){
this.name = name;
this.score = score;
this.grade = grade;

}

public String getName(){
return name;

}

public void setName(String name){
this.name = name;

}

public int getScore(){
return score;

}

public void setScore(int score){
this.score = score;

}

public String getGrade(){

7-25

7 Java Client Programming

return grade;
}

public void setGrade(String grade){
this.grade = grade;

}

public String toString(){
return "Student:\n\tname : " + name +

"\n\tscore : " + score + "\n\tgrade : " + grade;
}

}

Note Note that this example uses the toString method for marshaling
convenience. It is not required.

Next, define the Java interface StudentSorter, which calls method
sortstudents and uses the Student class to marshal inputs and outputs.

Since you are working with a struct type, Student must be included in the
annotation MWStructureList .

Java Interface StudentSorter

interface StudentSorter {
@MWStructureList({Student.class})
Student[] sortstudents(Student[] students)

throws IOException, MATLABException;
}

Finally, you write the Java application (MPSClientExample) for the client:

1 Create MWHttpClient and associated proxy (using createProxy) as shown
in .

2 Create an unsorted student struct array in Java that mimics the MATLAB
struct in naming, number of inputs and outputs, and type validity in
MATLAB. See for more information.

7-26

Marshal MATLAB Structures (Structs) in Java

3 Sort the student array and display it.

Java ClientExample Class

import java.net.URL;

import java.io.IOException;

import com.mathworks.mps.client.MWClient;

import com.mathworks.mps.client.MWHttpClient;

import com.mathworks.mps.client.MATLABException;

import com.mathworks.mps.client.annotations.MWStructureList;

interface StudentSorter {

@MWStructureList({Student.class})

Student[] sortstudents(Student[] students)

throws IOException, MATLABException;

}

public class ClientExample {

public static void main(String[] args){

MWClient client = new MWHttpClient();

try{

StudentSorter s =

client.createProxy(new URL("http://localhost:9910/scoresorter"),

StudentSorter.class);

Student[] students = new Student[]{new Student("Toni Miller", 90, "A"),

new Student("Ed Plum", 80, "B+"),

new Student("Mark Jones", 85, "A-")};

Student[] sorted = s.sortstudents(students);

System.out.println("Student list sorted in the

ascending order of scores : ");

for(Student st:sorted){

System.out.println(st);

}

}catch(IOException ex){

System.out.println(ex);

}catch(MATLABException ex){

System.out.println(ex);

}finally{

7-27

7 Java Client Programming

client.close();

}

}

}

Defining MATLAB Structures Only Used as Inputs
When defining Java structs as inputs, follow these guidelines:

• Ensure that the fields in the Java class match the field names in the
MATLAB struct exactly. The field names are case sensitive.

• Use public get methods on the fields in the Java class. Whether or not
the class needs both get and setmethods for the fields depends on whether
it is being used as input or output or both. In this example, note that when
student is passed as an input to method sortstudents, only the get
methods for its fields are used by the data marshaling algorithm.

As a result, if a Java class is defined for a MATLAB structure that is only
used as an input value, the set methods are not required. This version of the
Student class only represents input values:

Java Class Student with Struct as Input

public class Student{

private String name;
private int score;
private String grade;

public Student(String name, int score, String grade){
this.name = name;
this.score = score;
this.grade = grade;

}

public String getName(){
return name;

}

7-28

Marshal MATLAB Structures (Structs) in Java

public int getScore(){
return score;

}

public String getGrade(){
return grade;

}
}

Defining MATLAB Structures Only Used as an Output
When defining Java structs as outputs, follow these guidelines:

• Ensure that the fields in the Java class match the field names in the
MATLAB struct exactly. The field names are case sensitive.

• Create a new instance of the Java class using the structure received
from MATLAB. Do so by using set methods or @ConstructorProperties
annotation provided by Java. get methods are not required for a Java class
when defining output-only MATLAB structures.

An output-only Student class using set methods follows:

Java Class Student with Struct as Output

public class Student{

private String name;
private int score;
private String grade;

public void setName(String name){
this.name = name;

}

public void setScore(int score){
this.score = score;

}

public void setGrade(String grade){

7-29

7 Java Client Programming

this.grade = grade;
}

}

An output-only Student class using @ConstructorProperties follows:

Defining MATLAB structures for output using @ConstructorProperties
annotation

public class Student{

private String name;
private int score;
private String grade;

@ConstructorProperties({"name","score","grade"})
public Student(String n, int s, String g){

this.name = n;
this.score = s;
this.grade = g;

}
}

Note If both set methods and @ConstructorProperties annotation are
provided, set methods take precedence over @ConstructorProperties
annotation.

Defining MATLAB Structures Used as Both Inputs and Outputs
If the Student class is used as both an input and output, you need to provide
get methods to perform marshaling to MATLAB. For marshaling from
MATLAB, use set methods or @ConstructorProperties annotation.

7-30

Data Conversion with Java and MATLAB Types

Data Conversion with Java and MATLAB Types

Working with MATLAB Data Types
There are many data types that you can work with in MATLAB. Each of
these data types is in the form of a matrix or array. You can build matrices
and arrays of floating-point and integer data, characters and strings, and
logical true and false states. Structures and cell arrays provide a way to store
dissimilar types of data in the same array.

All of the fundamental MATLAB classes are circled in the diagram
Fundamental MATLAB Data Types on page 7-32.

The Java client follows Java-MATLAB-Interface (JMI) rules for data
marshaling. It expands those rules for scalar Java boxed types, allowing
auto-boxing and un-boxing, which JMI does not support.

Note Function Handles are not supported by MATLAB Production Server.

7-31

7 Java Client Programming

Fundamental MATLAB Data Types

The expected conversion results for Java to MATLAB types are listed in
“Conversion of Java Types to MATLAB Types” on page A-2. The expected
conversion results for MATLAB to Java types are listed in “Conversion of
MATLAB Types to Java Types” on page A-4.

Scalar Numeric Type Coercion
Scalar numeric MATLAB types can be assigned to multiple Java numeric
types as long as there is no loss of data or precision.

The main exception to this rule is that MATLAB double scalar data can be
mapped into any Java numeric type. Because double is the default numeric
type in MATLAB, this exception provides more flexibility to the users of
MATLAB Production Server Java client API.

7-32

Data Conversion with Java and MATLAB Types

MATLAB to Java Numeric Type Compatibility on page 7-33 describes the
type compatibility for scalar numeric coercion.

MATLAB to Java Numeric Type Compatibility

MATLAB Type Java Types

uint8 short, int, long, float, double

int8 short, int, long, float, double

uint16 int, long, float, double

int16 int, long, float, double

uint32 long, float, double

int32 long, float, double

uint64 float, double

int64 float, double

single double

double byte, short, int, long, float

Dimensionality in Java and MATLAB Data Types
In MATLAB, dimensionality is an attribute of the fundamental types and
does not add to the number of types as it does in Java.

In Java, double, double[] and double[][][] are three different data types.
In MATLAB, there is only a double data type and possibly a scalar instance,
a vector instance, or a multi-dimensional instance.

Java Signature Value Returned from MATLAB

double[][][] foo() ones(1,2,3)

Dimension Coercion
How you define your MATLAB function and corresponding Java method
signature determines if your output data will be coerced, using padding or
truncation.

7-33

7 Java Client Programming

This coercion is automatically performed for you. This section describes the
rules followed for padding and truncation.

Padding

When a Java method’s return type has more dimensions than MATLAB’s,
MATLAB’s dimensions are be padded with ones (1s) to match the required
number of output dimensions in Java.

You, as a developer, do not have to do anything to pad dimensions.

The following tables provide examples of how padding is performed for you:

How MATLAB Pads Your Java Method Return Type

When Dimensions
in MATLAB are:

And Dimensions in
Java are:

This Type in Java: Returns this Type in
MATLAB:

size(a) is[2,3] Array will be returned
as size 2,3,1,1

double [][][][]
foo()

function a = foo a
= ones(2,3);

Padding Dimensions in MATLAB and Java Data Conversion

MATLAB Array Dimensions Declared Output Java Type Output Java Dimensions

2 x 3 double[][][] 2 x 3 x 1

2 x 3 double[][][][] 2 x 3 x 1 x 1

Truncation

When a Java method’s return type has fewer dimensions than MATLAB’s,
MATLAB’s dimensions are truncated to match the required number of output
dimensions in Java. This is only possible when extra dimensions for MATLAB
array have values of ones (1s) only.

To compute appropriate number of dimensions in Java, excess ones are
truncated, in this order:

1 From the end of the array

7-34

Data Conversion with Java and MATLAB Types

2 From the array’s beginning

3 From the middle of the array (scanning front-to-back).

You, as a developer, do not have to do anything to truncate dimensions.

The following tables provide examples of how truncation is performed for you:

How MATLAB Truncates Your Java Method Return Type

When Dimensions
in MATLAB are:

And Dimensions in
Java are:

This Type in Java: Returns this Type in
MATLAB

size(a) is
[1,2,1,1,3,1]

Array will be returned
as size 2,3

double [][] foo() function a
= foo a =
ones(1,2,1,1,3,1);

Following are some examples of dimension shortening using the double
numeric type:

Truncating Dimensions in MATLAB and Java Data Conversion

MATLAB Array Dimensions Declared Output Java Type Output Java Dimensions

1 x 1 double 0

2 x 1 double[] 2

1 x 2 double[] 2

2 x 3 x 1 double[][] 2 x 3

1 x 3 x 4 double[][] 3 x 4

1 x 3 x 4 x 1 x 1 double[][][] 1 x 3 x 4

1 x 3 x 1 x 1 x 2 x 1 x 4
x 1

double[][][][] 3 x 2 x 1 x 4

Empty (Zero) Dimensions
Passing arrays of zero (0) dimensions (sometimes called empties) results in an
empty matrix from MATLAB.

7-35

7 Java Client Programming

Java Signature Value Returned from MATLAB

double[] foo() []

Passing Java Empties to MATLAB

When a null is passed from Java to MATLAB, it will always be marshaled
into [] in MATLAB as a zero by zero (0 x 0) double. This is independent of
the declared input type used in Java. For example, all the following methods
can accept null as an input value:

void foo(String input);
void foo(double[] input);
void foo(double[][] input);
void foo(Double input);

And in MATLAB, null will be received as:

[] i.e. 0x0 double

Passing MATLAB Empties to Java

An empty array in MATLAB has at least one zero (0) assigned in at least one
dimension. For function a = foo, for example, any one of the following
values is acceptable:

a = [];
a = ones(0);
a = ones(0,0);
a = ones(1,2,0,3);

Empty MATLAB data will be returned to Java as null for all the above cases.

For example, in Java, the following signatures return null when a MATLAB
function returns an empty array:

double[] foo();
double[][] foo();
Double foo();

7-36

Data Conversion with Java and MATLAB Types

However, when MATLAB returns an empty array and the return type in Java
is a scalar primitive (as with double foo();, for example) an exception
is thrown . :

IllegalArgumentException
("An empty MATLAB array cannot be represented by a

primitive scalar Java type")

Boxed Types
Boxed Types are used to wrap opaque C structures.

Java client will perform primitive to boxed type conversion if boxed types are
used as return types in the Java method signature.

Java Signature Value Returned from MATLAB

Double foo() 1.0

For example, the following method signatures work interchangeably:

double[] foo(); Double[] foo();
double[][][] foo(); Double[][][] foo();

Signed and Unsigned Types in Java and MATLAB
Data Types
Numeric classes in MATLAB include signed and unsigned integers. Java
does not have unsigned types.

7-37

7 Java Client Programming

7-38

8

.NET Client Programming

• “.NET Client Coding Best Practices” on page 8-2

• “Preparing Your Microsoft® Visual Studio® Environment” on page 8-6

• “Access Secure Programs Using HTTPS ” on page 8-7

• “Bond Pricing Tool with GUI for .NET Client” on page 8-10

• “Code Multiple Outputs for C# .NET Client” on page 8-15

• “Code Variable-Length Inputs and Outputs for .NET Client” on page 8-17

• “Marshal MATLAB Structures (structs) in C#” on page 8-22

• “Data Conversion with C# and MATLAB Types” on page 8-34

8 .NET Client Programming

.NET Client Coding Best Practices
When writing .NET interfaces to invoke MATLAB code, remember these
guidelines:

• The method name exposed by the interface must match the name of the
MATLAB function being deployed. The method must have the same
number of inputs and outputs as the MATLAB function.

• The method input and output types must be convertible to and from
MATLAB.

• The number of inputs and outputs must be compatible with those supported
by MATLAB.

• If you are working with MATLAB structures, remember that the field
names are case sensitive and must match in both the MATLAB function
and corresponding user-defined .NET type.

• The name of the interface can be any valid .NET name.

• Your code should support exception handling.

.NET Client Prerequisites
Complete these steps to prepare your MATLAB Production Server .NET
development environment.

1 Install Microsoft Visual Studio. See
http://www.mathworks.com/support/compilers/current_release/ for an
up-to-date listing of supported software, including IDEs and Microsoft
.NET Frameworks.

2 Verify that you have one generic CTF archive in your server’s auto_deploy
folder for each application interface you plan to create on the client.

For information about creating a CTF archive with the Deployment Tool,
see .

3 Verify that your server main_config file is customized to point to where
your MCR instance is installed (using --mcr-root).

8-2

http://www.mathworks.com/support/compilers/current_release/

.NET Client Coding Best Practices

4 Your server must be running in order to perform to the following client
example.

Handling Exceptions
You should declare exceptions for the following errors:

For This Error Use This
Method

To Declare This Exception

MATLAB errors MATLABException MathWorks.MATLAB.ProductionServer.Client.
MWClient.MATLABException

Transport errors
occurring during
client-server
communication

WebException System.Net.WebException

Managing System Resources
A single .NET client connects to one or more servers available at different
URLs. Even though users sometimes create multiple instances of
MWHttpClient, you can use a single instance to communicate with more than
one server. The server and client have a one to one relationship at any point
in time. The server cannot communicate with multiple clients simultaneously.

Proxy objects, created using an instance of MWHttpClient, communicate with
the server until the Dispose method of that instance is invoked. Therefore,
it is important to call the Dispose method only when the MWHttpClient
instance is no longer needed, to reclaim system resources.

Using IDisposable to Release Resources Consumed by
MWHttpClient Instances
Call the Dispose method (an implementation of IDisposable) on unneeded
client instances to free native resources, such as open connections created by
an instance of MWHttpClient.

You call Dispose in either of two ways:

8-3

8 .NET Client Programming

• Call Dispose Directly — Call the method directly on the object whose
resources you want to free:

client.Dispose();

• The using keyword — Implicitly invoke Dispose on theMWHttpClient
instance with the using keyword. By doing this, you don’t have to explicitly
call the Dispose method—the .NET Framework handles cleanup for you.

Following is a code snippet that demonstrates use of the using keyword:

using (MWClient client = new MWHttpClient(new TestConfigDispose()))
{

// Use client to create proxy instances and invoke
// MATLAB functions....

}

Caution Calling Dispose on instances of MWClient closes all open sockets
bound to the instance.

Configure Client Timeout Value for Connection with
a Server
To prevent client and server deadlocks and to ensure client stability, consider
setting a timeout parameter when the client is connected with the server
and the server becomes unresponsive.

To set a timeout parameter in milliseconds, implement interface
MWHttpClientConfig in your client code. Use the overloaded constructor of
MWHttpClient, which takes in an instance of MWHttpClientConfig.

For example, to set the client to timeout after no response from the server
after 3 minutes (180000 milliseconds), add the following to your client code
(as shown in the Magic Square example in).

class CustomConfig : MWHttpClientConfig
{

public int TimeoutMilliSeconds
{

get { return 180000; }

8-4

.NET Client Coding Best Practices

}
}

Note The default timeout parameter is 120000 milliseconds (2 minutes).

Data Conversion for .NET and MATLAB Types
For information regarding supported MATLAB types for client and server
marshaling, see

Where to Find the API Documentation
The API doc for the .NET client is installed in $MPS_INSTALL/client.

8-5

8 .NET Client Programming

Preparing Your Microsoft Visual Studio Environment
Before you begin writing the .NET application interface, complete the
following steps to prepare your development environment.

Creating a Microsoft Visual Studio Project

1 Open Microsoft Visual Studio.

2 Click File > New > Project.

3 In the New Project dialog box, select the project type and template you
want to use. For example, if you want to create a C# Console Application,
selectWindows in the Visual C# branch of the Project Type pane. Select
the C# Console Application template from the Templates pane.

4 Type the name of the project in the Name field (MainApp, for example).

5 Click OK. Your MainApp source shell is created.

Creating a Reference to the Client Run-Time Library
Create a reference in your MainApp code to the MATLAB Production Server
client run-time library. In Microsoft Visual Studio, perform the following
steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on
the right side), select the name of your project, MainApp, highlighting it.

2 Right-click MainApp and select Add Reference.

3 In the Add Reference dialog box, select the Browse
tab. Browse to the MATLAB Production Server client
runtime, installed at $MPS_INSTALL\client\dotnet. Select
Mathworks.MATLAB.ProductionServer.Client.dll.

4 Click OK. Mathworks.MATLAB.ProductionServer.Client.dll is now
referenced by your Microsoft Visual Studio project.

8-6

Access Secure Programs Using HTTPS

Access Secure Programs Using HTTPS

In this section...

“Overview” on page 8-7

“Configure the Client Environment for SSL ” on page 8-7

“Establish a Secure Proxy Connection” on page 8-7

“Establish a Secure Connection using Client Authentication” on page 8-8

“Implementing Advanced Authentication Features” on page 8-9

Overview
Connecting to a MATLAB Production Server instance over HTTPS provides
a secure channel for executing MATLAB functions. To establish an HTTPS
connection with a MATLAB Production Server instance:

1 Ensure that the server is configured to use HTTPS.

2 Install the required credentials on the client system.

3 Configure the client’s .Net environment to use the credentials.

4 Create the program proxy using the program’s https:// URL.

Configure the Client Environment for SSL
At a minimum the client requires the server’s root CA (Certificate Authority)
in one of the application’s certificate stores. If the client needs to connect
to a server that requires client-side authentication, it also needs a signed
certificate in one of the application’s certificate stores.

Use makecert to manage the client’s certificates. For information on using
makecert see the MSDN documentation.

Establish a Secure Proxy Connection
You can create a secure proxy connection with a MATLAB Production Server
instance by using the https:// URL for the desired program:

8-7

http://msdn.microsoft.com/en-us/library/bfsktky3.aspx

8 .NET Client Programming

MWClient client = new MWHttpClient();
Uri secureUri = new Uri("https://host:port/myCTF")
MyCTFProxy sslProxy = client.createProxy<MyCTFProxy>(secureUri);

sslProxy checks the application’s certificate stores to perform the HTTPS
server authentication. If the server requests client authentication, the HTTPS
handshake will fail because the client does not have a certificate.

Establish a Secure Connection using Client
Authentication
To enable your client to connect with a server instance requiring client
authentication, you:

1 Provide an implementation of the MWSSLConfig interface that returns a valid
client certificate collection.

2 Use the MWHttpClient constructor that takes an instance of your MWSSLConfig
implementation to create the connection to the server instance.

3 Create the proxy using the program’s https:// URL.

Implement the MWSSLConfig Interface
The MWSSLConfig interface has a single property, ClientCertificates, of
type X509CertificateCollection. You need to provide an implementation
that returns the client’s certificates.

public class ClientSSLConfig : MWSSLConfig
{

public X509CertificateCollection ClientCertificates
{

get
{

X509Certificate2 clientCert = new X509Certificate2("C:\temp\certifica
return new X509Certificate2Collection(clientCert);

}
}

}

8-8

Access Secure Programs Using HTTPS

Establish the Secure Connection
You create a secure proxy connection with a MATLAB Production Server
instance by using the constructor that takes an instance of your MWSSLConfig
implementation and creating the proxy with the https:// URL for the
desired program:

MWClient client = new MWHttpClient(new ClientSSLConfig());
Uri secureUri = new Uri("https://host:port/myCTF")
MyCTFProxy sslProxy = client.createProxy<MyCTFProxy>(secureUri);

sslProxy will use the local user trust store to perform the HTTPS server
authentication. If the server requests client authentication, the client passes
the certificates in the collection returned by your implementation of the
MWSSLConfig interface.

Implementing Advanced Authentication Features
You can perform alternate hostname verification to authenticate
servers when the URL hostname does not match the certificate’s
hostname. You can also perform an extra level of server authorization
to ensure that the client only shares data with very specific
servers. These extra layers of security are performed using the .Net
ServicePointManager.ServerCertificateValidationCallback property.

The ServerCertificateValidationCallback property is a delegate that
is used to process the certificates during the SSL handshake. By default,
no delegate is implemented so no custom processing is performed. You can
provide an implementation to perform any custom authorization required.
For more information see the .Net ServicePointManager documentation.

8-9

http://msdn.microsoft.com/en-us/library/system.net.servicepointmanager.servercertificatevalidationcallback.aspx

8 .NET Client Programming

Bond Pricing Tool with GUI for .NET Client
This example shows an application that calculates a bond price from a simple
formula.

You run this example by entering the following known values into a simple
graphical interface:

• Coupon payment — C

• Number of payments — N

• Interest rate — i

• Value of bond or option at maturity — M

The application calculates price (P) based on the following equation:

P = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N

Objectives
The Bond Pricing Tool demonstrates the following features of MATLAB
Production Server:

• Deploying a simple MATLAB function with a fixed number of inputs and
a single output

• Deploying a MATLAB function with a simple GUI front-end for data input

• Using dispose() to free system resources

Step 1: Write MATLAB Code
Implement the Bond Pricing Tool in MATLAB, by writing the following code.
Name the code pricecalc.m.

Sample code is available in MPS_INSTALL\client\java\examples\MATLAB.

function price = pricecalc(value_at_maturity, coupon_payment,...
interest_rate, num_payments)

C = coupon_payment;
N = num_payments;

8-10

Bond Pricing Tool with GUI for .NET Client

i = interest_rate;
M = value_at_maturity;

price = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N;

end

Step 2: Create a Deployable CTF Archive with the
Library Compiler App
To create the deployable archive for this example:

1 From MATLAB, select the Library Compiler App.

2 In the Application Type list, select Generic CTF.

3 In the Exported Functions field, add pricecalc.m.

pricecalc.m is located in
MPS_INSTALL\client\java\examples\BondPricingTool\MATLAB.

4 Under Application Information, change pricecalc to BondTools.

5 Click Package.

The generated deployable archive, BondTools.ctf is located in the
for_redistribution_files_only of the project’s folder.

Step 3: Share the Deployable CTF Archive on a Server

1 Download the MATLAB Compiler Runtime, if needed, at
http://www.mathworks.com/products/compiler/mcr. See “MATLAB
Compiler Runtime (MCR) Installation” on page 5-14 for more information.

2 Create a server using mps-new. See “Server Creation” on page 5-11 for
more information.

3 If you have not already done so, specify the location of the MATLAB
Compiler Runtime (MCR) to the server by editing the server configuration
file, main_config and specifying a path for --mcr-root. See “Configuration
File Customization” on page 5-22 for details.

8-11

http://www.mathworks.com/products/compiler/mcr

8 .NET Client Programming

4 Start the server using mps-start and verify it is running with mps-status.

5 Copy the BondTools.ctf file to theauto_deploy folder on the server for
hosting. See for complete details.

Step 4: Create the C# Client Code
Create a compatible client interface, defining methods in C# to match
MATLAB function pricecalc.m, hosted by the server as BondTools.ctf,
using the guidelines in this section.

When developing your C# code, perform the following tasks, described in the
sections that follow. For more information about clients coding basics and
best practices, see “.NET Client Coding Best Practices” on page 8-2.

Declare C# Method Signatures Compatible with MATLAB
Functions You Deploy
To use the MATLAB functions you defined in “Step 1: Write MATLAB Code”
on page 7-8, declare the corresponding C# method signature in the interface
BondTools.cs:

public interface BondTools
{

double pricecalc(double faceValue, double couponYield,
double interestRate, double numPayments);

}

This interface creates an array of primitive double types, corresponding to the
MATLAB primitive types (Double, in MATLAB, unless explicitly declared)
in pricecalc.m. A one to one mapping exists between the input arguments
in both the MATLAB function and the C# interface The interface specifies
compatible type double. This compliance between the MATLAB and C#
signatures demonstrates the guidelines listed in .

Instantiate MWClient, Create Proxy, and Specify Deployable
CTF Archive
In the ServerBondToolsFactory class, perform a typical MATLAB Production
Server client setup:

8-12

Bond Pricing Tool with GUI for .NET Client

1 Instantiate MWClient with an instance of MWHttpClient:

...

private MWClient client = new MWHttpClient();

...

2 Call createProxy on the new client instance. Specify port number (9910)
and the CTF archive name (BondTools) the server is hosting in the
auto_deploy folder:

...

public BondTools newInstance()

{

return client.CreateProxy<BondTools>(new Uri("http://localhost:9910/BondTools"));

}...

Use Dispose() Consistently to Free System Resources
This application makes use of the Factory pattern to encapsulate creation of
several types of objects.

Any time you create objects—and therefore allocate resources—ensure you
free those resources using Dispose().

For example, note that in ServerBondToolsFactory.cs, you dispose of the
MWHttpClient instance you created in “Instantiate MWClient, Create Proxy,
and Specify Deployable CTF Archive” on page 8-12 when it is no longer
needed.

Additionally, note the Dispose() calls to clean up the factories in
BondToolsStubFactory.cs and BondTools.cs.

Dispose() is an implementation of IDisposable. For more information about
using Dispose() to free resources, see “Use Dispose() Consistently to Free
System Resources” on page 8-13.

Step 5: Build the Client Code and Run the Example
Before you attempt to build and run your client code, ensure that you have
done the following:

8-13

8 .NET Client Programming

• Added the Mathworks.MATLAB.ProductionServer.Client.dll assembly
($MPS_INSTALL\client\net) as a reference to your Microsoft Visual Studio
project.

• Copied your deployable CTF archive to your server’s auto_deploy folder.

• Modified your server’s main_config file to point to where your MCR is
installed (using mcr-root).

• Started your server and verified it is running.

8-14

Code Multiple Outputs for C# .NET Client

Code Multiple Outputs for C# .NET Client
MATLAB allows users to write functions with multiple outputs. To code
multiple outputs in C#, use the out keyword.

The following MATLAB code takes multiple inputs (i1, i2, i3) and returns
multiple outputs (o1, o2, o3), after performing some checks and calculations.

In this example, the first input and output are of type double, and the second
input and output are of type int. The third input and output are of type
string.

To deploy this function with MATLAB Production Server software, you need
to write a corresponding method interface in C#, using the out keyword.
Specifying the out keyword causes arguments to be passed by reference.
When using out, ensure both the interface method definition and the calling
method explicitly specify the out keyword.

The output argument data types listed in your C# interface (referenced
with the out keyword) must match the output argument data types
listed in your MATLAB signature exactly. Therefore, in the C# interface
(MultipleOutputsExample) and method (TryMultipleOutputs) code samples,
multiple outputs are listed (with matching specified data types) in the same
order as they are listed in your MATLAB function.

MATLAB Function multipleoutputs

function [o1 o2 o3] = multipleoutputs(i1, i2, i3)
o1 = modifyinput(i1);
o2 = modifyinput(i2);
o3 = modifyinput(i3);

function out = modifyinput(in)
if(isnumeric(in))

out = in*2;
elseif(ischar(in))

out = upper(in);
else

out = in;
end

8-15

8 .NET Client Programming

C# Interface MultipleOutputsExample

public interface MultipleOutputsExample

{

void multipleoutputs(out double o1, out int o2, out string o3,

double i1, int i2, string i3);

}

C# Method TryMultipleOutputs

public static void TryMultipleOutputs()

{

MWClient client = new MWHttpClient();

MultipleOutputsExample mpsexample =

client.CreateProxy<MultipleOutputsExample>(new Uri("http://localhost:9910/mpsexample"));

double o1;

int o2;

string o3;

mpsexample.multipleoutputs(out o1, out o2, out o3, 1.2, 10, "hello");

}

After creating a new instance of MWHttpClient and a client proxy, variables
and the calling method, multipleoutputs, are declared.

In the multipleoutputs method, values matching each declared types are
passed for output (1.2 for double, 10 for int, and hello for string) to
output1.

Note the following coding best practices illustrated by this example:

• Both the MATLAB function signature and the C# interface method
signature use the name multipleOutputs. Both MATLAB and C# code are
processing three inputs and three outputs.

• MATLAB .NET interface supports direct conversion from C# double array
to MATLAB double array and from C# string to MATLAB char array. For
more information, see “Data Conversion with C# and MATLAB Types”
on page 8-34 and “Conversion Between MATLAB Types and C# Types”
on page A-6.

8-16

Code Variable-Length Inputs and Outputs for .NET Client

Code Variable-Length Inputs and Outputs for .NET Client
MATLAB Production Server .NET client supports the MATLAB capability of
working with variable-length inputs. See theMATLAB Function Reference for
complete information on varargin and varargout.

Using varargin with .NET Client
You pass MATLAB variable input arguments (varargin) using the params
keyword.

For example, consider the MATLAB function varargintest, which takes
a variable-length input (varargin)—containing strings and integers—and
returns an array of cells (o).

MATLAB Function varargintest

function o = varargintest(s1, i2, varargin)

o{1} = s1;
o{2} = i2;
idx = 3;
for i=1:length(varargin)

o{idx} = varargin{i};
idx = idx+1;

end

The C# interface VararginTest implements the MATLAB function
varargintest.

C# Interface VararginTest

public interface VararginTest
{

object[] varargintest(string s, int i, params object[] objArg);
}

Since you are sending output to cell arrays in MATLAB, you define a
compatible C# array type of object[] in your interface. objArg defines
number of inputs passed—in this case, two.

8-17

http://msdn.microsoft.com/en-us/library/w5zay9db(v=vs.71).aspx

8 .NET Client Programming

The C# method TryVarargin implements VararginTest, sending two strings
and two integers to the deployed MATLAB function, to be returned as a
cell array.

C# Method TryVarargin

public static void TryVarargin()

{

MWClient client = new MWHttpClient();

VararginTest mpsexample =

client.CreateProxy<VararginTest>(new Uri("http://localhost:9910/mpsexample"));

object[] vOut = mpsexample.varargintest("test", 20, false, new int[]{1,2,3});

Console.ReadLine();

}

Note the following coding best practices illustrated by this example:

• Both the MATLAB function signature and the C# interface method
signature use the name varargintest. Both MATLAB and C# code are
processing two variable-length inputs, string and integer.

• MATLAB .NET interface supports direct conversion between MATLAB cell
arrays and C# object arrays. See “Data Conversion with C# and MATLAB
Types” on page 8-34 and “Conversion Between MATLAB Types and C#
Types” on page A-6 for more information.

Using varargout with .NET Client
MATLAB variable output arguments (varargout) are obtained
by passing an instance of System.Object[] array. The array
is passed with the attribute [varargout], defined in the
Mathworks.MATLAB.ProductionServer.Client.dll assembly.

Before passing the System.Object[] instance, initialize the System.Object
array instance with the maximum length of the variable in your calling
method. The array is limited to one dimension.

For example, consider the MATLAB function varargouttest, which takes
one variable-length input (varargin), and returns one variable-length output
(varargout), as well as two non-variable-length outputs (out1 and out2).

8-18

Code Variable-Length Inputs and Outputs for .NET Client

MATLAB Function varargouttest

functionout [out1 out2 varargout] = varargouttest(in1, in2, varargin)

out1 = modifyinput(in1);
out2 =modifyinput(in2);

for i=1:length(varargin)
varargout{i} = modifyinput(varargin{i});

end

function out = modifyinput(in)
if (isnumeric(in))

out = in*2;
elseif (ischar(in))

out = upper(in);
elseif (islogical(in))

out = ~in;
else

out = in;
end

Implement MATLAB function varargouttest with the C# interface
VarargoutTest.

In the interface method varargouttest, you define multiple
non-variable-length outputs (o1 and o2, using the out keyword, described in
“Code Multiple Outputs for C# .NET Client” on page 8-15), a double input
(in1) and a string input (in2).

You pass the variable-length output (o3) using a single-dimensional array
(object[] with attribute [varargout]), an instance of System.Object[].

As with “Using varargin with .NET Client” on page 8-17, you use the params
keyword to pass the variable-length input.

C# Interface VarargoutTest

public interface VarargOutTest

{

8-19

http://msdn.microsoft.com/en-us/library/w5zay9db(v=vs.71).aspx

8 .NET Client Programming

void varargouttest(out double o1, out string o2, double in1, string in2

[varargout] object[] o3, params object[] varargIn);

}

In the calling method TryVarargout, note that both the type and length of the
variable output (varargOut) are being passed ((short)12).

C# Method TryVarargout

Note Ensure that you initialize varargOut to the appropriate length before
passing it as input to the method varargouttest.

public static void TryVarargout()

{

MWClient client = new MWHttpClient();

VarargOutTest mpsexample =

client.CreateProxy<VarargOutTest>(new Uri("http://localhost:9910/mpsexample"));

object[] varargOut = new object[3]; // get all 3 outputs

double o1;

string o2;

mpsexample.varargouttest(out o1, out o2, 1.2, "hello",

varargOut, true, (short)12, "test");

varargOut = new object[2]; // only get 2 outputs

double o11;

string o22;

mpsexample.varargouttest(out o11, out o22, 1.2, "hello",

varargOut, true, (short)12, "test");

}

Note the following coding best practices illustrated by this example:

• Both the MATLAB function signature and the C# interface method
signature use the name varargouttest. Both MATLAB and C# code
are processing a variable-length input, a variable-length output, and two
multiple non-variable-length outputs.

8-20

Code Variable-Length Inputs and Outputs for .NET Client

• MATLAB .NET interface supports direct conversion between MATLAB cell
arrays and C# object arrays. See “Data Conversion with C# and MATLAB
Types” on page 8-34 and “Conversion Between MATLAB Types and C#
Types” on page A-6 for more information.

8-21

8 .NET Client Programming

Marshal MATLAB Structures (structs) in C#
Structures (or structs) are MATLAB arrays with elements accessed by textual
field designators.

Structs consist of data containers, called fields. Each field stores an array of
some MATLAB data type. Every field has a unique name.

Creating a MATLAB Structure
MATLAB structures are ordered lists of name-value pairs. You represent
them in C# by defining a .NET struct or class, as long as it has public fields
or properties corresponding to the MATLAB structure. A field or property in a
.NET struct or class can have a value convertible to and from any MATLAB
data type, including a cell array or another structure. The examples in this
article use both .NET structs and classes.

In MATLAB, a student structure containing name, score, and grade, is
created as follows:

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

This code creates a scalar structure (S) with three fields:

S =
name: 'Ed Plum'
score: 83
grade: 'B+'

A multidimensional structure array can be created by inserting additional
elements. A structure array of dimensions (1,3) is created. For example:

S(2).name = 'Tony Miller';
S(2).score = 91;
S(2).grade = 'A-';

S(3).name = 'Mark Jones';
S(3).score = 85;
S(3).grade = 'A-';

8-22

Marshal MATLAB Structures (structs) in C#

Using .NET Structs and Classes
You create .NET structs and classes to marshal data to and from MATLAB
structures.

The .NET struct Student is an example of a .NET struct that is marshaling
.NET types as inputs to MATLAB function, such as sortstudents, using
public fields and properties. Note the publicly declared field name, and the
properties grade and score.

In addition to using a .NET struct, Please note the following:

• Student can also be defined as a class.

• Even though in this example a combination of public fields and properties
is used, you can also use only fields or properties.

.NET Struct Student

public struct Student
{

public string name;
private string gr;
private int sc;

public string grade
{

get { return gr; }
set { gr = value; }

}

public int score
{

get { return sc; }
set { sc = value; }

}

public override string ToString()
{

return name + " : " + grade + " : " + score;

8-23

8 .NET Client Programming

}
}

Note Note that this example uses the ToString for convenience. It is not
required for marshaling.

The C# class SimpleStruct uses public readable properties as input to
MATLAB, and uses a public constructor when marshaling as output from
MATLAB.

When this class is passed as input to a MATLAB function, it results in a
MATLAB struct with fields Field1 and Field2, which are defined as public
readable properties. When a MATLAB struct with field names Field1 and
Field2 is passed from MATLAB, it is used as the target .NET type (string
and double, respectively) because it has a constructor with input parameters
Field1 and Field2.

C# Class SimpleStruct

public class SimpleStructExample
{

private string f1;
private double f2;

public SimpleStruct(string Field1, double Field2)
{

f1 = Field1;
f2 = Field2;

}

public string Field1
{

get
{

return f1;
}

}

8-24

Marshal MATLAB Structures (structs) in C#

public double Field2
{

get
{

return f2;
}

}
}

MATLAB function sortstudents takes in an array of student structures
and sorts the input array in ascending order by score of each student. Each
element in the struct array represents different information about a student.

The C# interface StudentSorter and method sortstudents is provided to
show equivalent functionality in C#.

Your .NET structs and classes must adhere to specific requirements, based on
both the level of scoping (fields and properties as opposed to constructor, for
example) and whether you are marshaling .NET types to or from a MATLAB
structure. See for details.

MATLAB Function sortstudents

function sorted = sortstudents(unsorted)

% Receive a vector of students as input

% Get scores of all the students

scores = {unsorted.score};

% Convert the cell array containing scores into a numeric array or doubles

scores = cell2mat(scores);

% Sort the scores array

[s i] = sort(scores);

% Sort the students array based on the sorted scores array

sorted = unsorted(i);

Note Even though this example only uses the scores field of the input
structure, you can also work with name and grade fields in a similar manner.

8-25

8 .NET Client Programming

The .NET interface StudentSorter, with method sortstudents, uses the
previously defined .NET Student struct for inputs and outputs. When
marshaling structs for input and output in .NET, the Student struct or
class must be included in the MWStructureList attribute. Please refer the
documentation for this custom attribute in the API documentation, located in
$MPS_INSTALL/client.

C# Interface StudentSorter

public interface StudentSorter {
[MWStructureList(typeof(Student))]
Student[] sortstudents(Student[] students);

}

C# Class ClientExample

using System;

using System.Net;

using MathWorks.MATLAB.ProductionServer.Client;

namespace MPS

{

public interface StudentSorter

{

[MWStructureList(typeof(Student))]

Student[] sortstudents(Student[] students);

}

class ClientExample

{

static void Main(string[] args)

{

MWClient client = null;

try

{

client = new MWHttpClient();

StudentSorter mtsexample =

client.CreateProxy(new Uri("http://test-machine:9910/scoresorter"));

8-26

Marshal MATLAB Structures (structs) in C#

Student s1 = new Student();

s1.name = "Tony Miller";

s1.score = 90;

s1.grade = "A";

Student s2 = new Student();

s2.name = "Ed Plum";

s2.score = 80;

s2.grade = "B+";

Student s3 = new Student();

s3.name = "Mark Jones";

s3.score = 85;

s3.grade = "A-";

Student[] unsorted = new Student[] { s1, s2, s3 };

Console.WriteLine("Unsorted list of students :");

foreach (Student st in unsorted)

{

Console.WriteLine(st);

}

Console.WriteLine();

Console.WriteLine("Sorted list of students :");

Student[] sorted = mtsexample.sortstudents(unsorted);

foreach (Student st in sorted)

{

Console.WriteLine(st);

}

}

catch (WebException ex)

{

HttpWebResponse response = (HttpWebResponse)ex.Response;

if (response != null)

{

Console.WriteLine("Status code : " +

8-27

8 .NET Client Programming

response.StatusCode);

Console.WriteLine("Status description : " +

response.StatusDescription);

}

else

{

Console.WriteLine("No response received in

WebException with status : " + ex.Status);

}

}

catch (MATLABException ex)

{

Console.WriteLine("MATLAB error thrown : ");

Console.WriteLine(ex.MATLABIdentifier);

Console.WriteLine(ex.MATLABStackTraceString);

}

finally

{

if (client != null)

{

client.Dispose();

}

}

}

}

}

When you run the application, the following output is generated:

Unsorted list of students :
Tony Miller : A : 90
Ed Plum : B+ : 80
Mark Jones : A- : 85

Sorted list of students :
Ed Plum : B+ : 80
Mark Jones : A- : 85
Tony Miller : A : 90
Press any key to continue . . .

8-28

Marshal MATLAB Structures (structs) in C#

Using Attributes
In addition to using the techniques described in “Using .NET Structs and
Classes” on page 8-23, attributes also provide versatile ways to marshal .NET
types to and from MATLAB structures.

The MATLAB Production Server-defined attribute MWStructureList can be
scoped at field, property, method, or interface level..

In the following example, a MATLAB function takes a cell array (vector) as
input containing various MATLAB struct data types and returns a cell
array (vector) as output containing modified versions of the input structs.

MATLAB Function outcell

function outCell = modifyinput(inCell)

Define the cell array using two .NET struct types:

.NET struct Types Struct1 and Struct2

public struct Struct1{
...
...

}
public struct Struct2{

...

...
}

Without using the MWStructureList attribute, the C# method signature in
the interface StructExample, is as follows:

public interface StructExample
{

public object[] modifyinput(object[] cellArrayWithStructs);
}

Note that this signature, as written, provides no information about the
structure types that cellArrayWithStructs include at run-time. By using

8-29

8 .NET Client Programming

the MWStructureList attribute, however, you define those types directly in
the method signature:

public interface StructExample
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] modifyinput(object[] cellArrayWithStructs);

}

The MWStructureList attribute can be scoped at:

• “Method Attributes” on page 8-30

• “Interface Attributes” on page 8-31

• “Fields and Property Attributes” on page 8-31

i

Method Attributes
In this example, the attribute MWStructureList is used as a method attribute
for marshaling both the input and output types.

public interface StructExample
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] modifyinput(object[] cellArrayWithStructs);

}

In this example, struct types Struct1 and Struct2 are not exposed to method
modifyinputNew because modifyinputNew is a separate method signature

public interface StructExample
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] modifyinput(object[] cellArrayWithStructs);
public object[] modifyinputNew(object[] cellArrayWithStructs);

}

8-30

Marshal MATLAB Structures (structs) in C#

Interface Attributes
When used at an interface level, an attribute is shared by all the methods
of the interface.

In the following example, both modifyinput and modifyinputNew methods
share the interface attribute MWStructureList because the attribute is
defined prior to the interface declaration.

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public interface StructExample
{

public object[] modifyinput(object[] cellArrayWithStructs);
public object[] modifyinputNew(object[] cellArrayWithStructs);

}

Fields and Property Attributes
Write the interface using public fields or public properties.

You can represent this type of .NET struct in three ways using fields and
properties:

• At the field:

Using public field and the MWStructureList attribute:

public struct StructWithinStruct
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] cellArrayWithStructs;

}

• At the property, for both get and set methods:

Using public properties and the MWStructureList attribute:

public struct StructWithinStruct
{

private object[] arr;

[MWStructureList(typeof(Struct1), typeof(Struct2))]

8-31

8 .NET Client Programming

public object[] cellArrayWithStructs
{

get
{

return arr;
}

set
{

arr = value;
}

}
}

• At the property, for both or either get or set methods, depending on whether
this struct will be used as an input to MATLAB or an output from MATLAB:

public struct StructWithinStruct
{

private object[] arr;

public object[] cellArrayWithStructs
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
get
{

return arr;
}

[MWStructureList(typeof(Struct1), typeof(Struct2))]
set
{

arr = value;
}

}
}

8-32

Marshal MATLAB Structures (structs) in C#

Note The last two examples, which show attributes used at the property,
produce the same result.

8-33

8 .NET Client Programming

Data Conversion with C# and MATLAB Types
When the .NET client invokes a MATLAB function through a request
and receives a result in the response, data conversion takes place between
MATLAB types and C# types.

Working with MATLAB Data Types
There are many data types, or classes, that you can work with in MATLAB.
Each of these classes is in the form of a matrix or array. You can build
matrices and arrays of floating-point and integer data, characters and strings,
and logical true and false states. Structures and cell arrays provide a way to
store dissimilar types of data in the same array.

All of the fundamental MATLAB classes are circled in the diagram
Fundamental MATLAB Data Classes on page 8-35.

Note Function Handles are not supported by MATLAB Production Server.

8-34

Data Conversion with C# and MATLAB Types

Fundamental MATLAB Data Classes

Each MATLAB data type has a specific equivalent in C#. Detailed
descriptions of these one-to-one relationships are defined in “Conversion
Between MATLAB Types and C# Types” on page A-6 in Appendix A, “Data
Conversion Rules”.

Scalar Numeric Type Coercion
Scalar numeric MATLAB types can be assigned to multiple .NET numeric
types as long as there is no loss of data or precision.

The main exception to this rule is that MATLAB double scalar data can be
mapped into any .NET numeric type. Because double is the default numeric
type in MATLAB, this exception provides more flexibility to the users of
MATLAB Production Server .NET client API.

8-35

8 .NET Client Programming

MATLAB to .NET Numeric Type Compatibility on page 8-36 describes the
type compatibility for scalar numeric coercion.

MATLAB to .NET Numeric Type Compatibility

MATLAB Type Java Types

uint8 System.Int16, System.UInt16,
System.Int32, System.UInt32,
System.Int64, System.UInt64,
System.Single, System.Double

int8 System.Int16, System.Int32,
System.Int64, System.Single,
System.Double

uint16 System.Int32, System.UInt32,
System.Int64, System.UInt64,
System.Single, System.Double

int16 System.Int32, System.Int64,
System.Single, System.Double

uint32 System.Int64, System.UInt64,
System.Single, System.Double

int32 System.Int64, System.Single,
System.Double

uint64 System.Single, System.Double

int64 System.Single, System.Double

single System.Double

double System.SByte, System.Byte,
System.Int16, System.UInt16,
System.Int32, System.UInt32,
System.Int64, System.UInt64,
System.SingleDimension Coercion

In MATLAB, dimensionality is an attribute of the fundamental types and
does not add to the number of types as it does in .NET.

In C#, double, double[] and double[,] are three different data types. In
MATLAB, there is only a double data type and possibly a scalar instance, a
vector instance, or a multi-dimensional instance.

8-36

Data Conversion with C# and MATLAB Types

C# Signature Value Returned from MATLAB

double[,,] foo() ones(1,2,3)

How you define your MATLAB function and corresponding C# method
signature determines if your output data will be coerced, using padding or
truncation.

This coercion is performed automatically for you. This section describes the
rules followed for padding and truncation.

Note Multidimensional arrays of C# types are supported. Jagged arrays
are not supported.

Padding
When a C# method’s return type has a greater number of dimensions than
MATLAB’s, MATLAB’s dimensions are padded with ones (1s) to match the
required number of output dimensions in C#.

The following tables provide examples of how padding is performed for you:

How Your C# Method Return Type is Padded

MATLAB
Function

C# Method
Signature

When
Dimensions in
MATLAB are:

And
Dimensions in
C# are:

function a =
foo
a = ones(2,3);

double[,,,]
foo()

size(a) is [2,3] Array will be
returned as size
2,3,1,1

Truncation
When a C# method’s return type has fewer dimensions than MATLAB’s,
MATLAB’s dimensions are truncated to match the required number of output
dimensions in C#. This is only possible when extra dimensions for MATLAB
array have values of ones (1s) only.

8-37

8 .NET Client Programming

To compute appropriate number of dimensions in C#, excess ones are
truncated, in this order:

1 From the end of the array

2 From the array’s beginning

3 From the middle of the array (scanning front-to-back).

The following tables provide examples of how truncation is performed for you:

How MATLAB Truncates Your C# Method Return Type

MATLAB Function C# Method
Signature

When Dimensions
in MATLAB are:

And Dimensions in
C# are:

function a = foo
a =
ones(1,2,1,1,3,1);

double[,] foo() size(a) is
[1,2,1,1,3,1]

Array will be returned
as size 2,3

Following are some examples of dimension shortening using the double
numeric type:

Truncating Dimensions in MATLAB and C# Data Conversion

MATLAB Array Dimensions Declared Output C# Type Output C# Dimensions

1 x 1 double 0 (scalar)

2 x 1 double[] 2

1 x 2 double[] 2

2 x 3 x 1 double[,] 2 x 3

1 x 3 x 4 double[,] 3 x 4

1 x 3 x 4 x 1 x 1 double[,,] 1 x 3 x 4

1 x 3 x 1 x 1 x 2 x 1 x 4
x 1

double[,,,] 3 x 2 x 1 x 4

8-38

Data Conversion with C# and MATLAB Types

Empty (Zero) Dimensions

Passing C# Empties to MATLAB
When a null is passed from C# to MATLAB, it will always be marshaled
into [] in MATLAB as a zero by zero (0 x 0) double. This is independent of
the declared input type used in C#. For example, all the following methods
can accept null as an input value:

void foo(String input);
void foo(double[] input);
void foo(double[,] input);

And in MATLAB, null will be received as:

[] i.e. 0x0 double

Passing MATLAB Empties to C#

An empty array in MATLAB has at least one zero (0) assigned in at least one
dimension. For function a = foo, for example, any one of the following
values is acceptable:

a = [];
a = ones(0);
a = ones(0,0);
a = ones(1,2,0,3);

Empty MATLAB data is returned to C# as null for all the above cases.

For example, in C#, the following signatures return null when a MATLAB
function returns an empty array:

double[] foo();
double[,] foo();

8-39

8 .NET Client Programming

8-40

9

Commands — Alphabetical
List

deploytool

Purpose Compile and package functions for external deployment

Syntax deploytool [-win32] [[[-build] | [-project]]project_name]

Description deploytool opens the MATLAB Compiler app.

deploytool project_name opens the MATLAB Compiler app with
the project preloaded.

deploytool -build project_name runs the MATLAB Compiler to
build the specified project. The installer is not generated.

deploytool -package project_name runs the MATLAB Compiler to
build and package the specified project. The installer is generated.

deploytool -win32 instructs the compiler to build a 32-bit application
on a 64-bit system when the following are true:

• You use the same MATLAB installation root (matlabroot) for both
32-bit and 64-bit versions of MATLAB.

• You are running from a Windows command line (not a MATLAB
command line).

Input
Arguments

project_name - name of the project to be compiled

Specify the name of a previously saved MATLAB Compiler project. The
project must be on the current path.

9-2

mcc

Purpose Compile MATLAB functions for deployment

Syntax mcc {-e} | {-m} [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder]
[-f filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename

mcc -l [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder] [-f
filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename…

mcc -c [-a filename]… [-B filename[:arg]…] [-C] [-d outFolder] [-f
filename] [-g] [-I directory]… [-K] [-M string] [-N] [-o filename]
[-p path]… [-R option] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename…

mcc -W cpplib:component_name -T link:lib [-a filename]… [-B
filename[:arg]…] [-C] [-d outFolder] [-f filename] [-g] [-I directory]…
[-K] [-M string] [-N] [-o filename] [-p path]… [-R option] [-S] [-v] [-w
option[:msg]] [-win32] [-Y filename] mfilename…

mcc -W dotnet:component_name,[className], [framework_version],
security, remote_type -T link:lib [-a filename]… [-B filename[:arg]…]
[-C] [-d outFolder] [-f filename] [-I directory]… [-K] [-M string] [-N]
[-p path]… [-R option] [-S] [-v] [-w option[:msg]] [-win32] [-Y filename]
mfilename… [class{className:[mfilename]…}]…

mcc -W excel:component_name,[className], [version] -T link:lib [-a
filename]… [-b] [-B filename[:arg]…] [-C] [-d outFolder] [-f filename]
[-I directory]… [-K] [-M string] [-N] [-p path]… [-R option] [-u] [-v]
[-w option[:msg]] [-win32] [-Y filename] mfilename…

mcc -W java:packageName,[className] [-a filename]… [-b]
[-B filename[:arg]…] [-C] [-d outFolder] [-f filename] [-I
directory]… [-K] [-M string] [-N] [-p path]… [-R option]
[-S] [-v] [-w option[:msg]] [-win32] [-Y filenamem] filename…
[class{className:[mfilename]…}]…

9-3

mcc

mcc -W CTF:component_name [-a filename]… [-b] [-B filename[:arg]…]
[-d outFolder] [-f filename] [-I directory]… [-K] [-M string] [-N] [-p
path]… [-R option] [-S] [-v] [-w option[:msg]] [-win32] [-Y filenamem]
filename… [class{className:[mfilename]…}]…

mcc -?

Description mcc -m mfilename compiles the function into a standalone application.

This is equivalent to -W main -T link:exe.

mcc -e mfilename compiles the function into a standalone application
that does not open an MS-DOS® command window.

This is equivalent to -W WinMain -T link:exe.

mcc -l mfilename... compiles the listed functions into a C shared
library and generates C wrapper code for integration with other
applications.

This is equivalent to -W lib:libname -T link:lib.

mcc -c mfilename... generates C wrapper code for the listed
functions.

This is equivalent to -W lib:libname -T codegen.

mcc -W cpplib:component_name -T link:lib mfilename...
compiles the listed functions into a C++ shared library and generates
C++ wrapper code for integration with other applications.

mcc -W dotnet:component_name,className,framework_version,
security,remote_type -T link:lib mfilename... creates a .NET
component from the specified files.

9-4

mcc

• component_name — Specifies the name of the component
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

• className— Specifies the name of the .NET class to be created.

• framework_version— Specifies the version of the Microsoft .NET
Framework you want to use to compile the component. Specify either:

- 0.0— Use the latest supported version on the target machine.

- version_major.version_minor — Use a specific version of the
framework.

Features are often version-specific. Consult the documentation
for the feature you are implementing to get the Microsoft .NET
Framework version requirements.

• security — Specifies whether the component to be created is a
private assembly or a shared assembly.

- To create a private assembly, specify Private.

- To create a shared assembly, specify the full path to the encryption
key file used to sign the assembly.

• remote_type— Specifies the remoting type of the component. Values
are remote and local.

By default, the compiler generates a single class with a method for each
function specified on the command line. You can instruct the compiler
to create multiple classes using class{className:mfilename...}....
className specifies the name of the class to create using mfilename.

mcc -W excel:component_name,className, version -T link:lib
mfilename... creates a Microsoft Excel component from the specified
files.

• component_name — Specifies the name of the component
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

9-5

mcc

• className — Specifies the name of the class to be created. If you
do not specify the class name, mcc uses the component_name as the
default.

• version — Specifies the version of the component specified as
major.minor.

- major— Specifies the major version number. If you do not specify
a version number, mcc uses the latest version.

- minor— Specifies the minor version number. If you do not specify
a version number, mcc uses the latest version.

mcc -W java:packageName,className mfilename... creates a Java
package from the specified files.

• packageName — Specifies the name of the Java package
and its namespace, which is a period-separated list, such as
companyname.groupname.component.

• className— Specifies the name of the class to be created. If you do
not specify the class name, mcc uses the last item in packageName.

By default, the compiler generates a single class with a method for each
function specified on the command line. You can instruct the compiler
to create multiple classes using class{className:mfilename...}....
className specifies the name of the class to create using mfilename.

mcc -W CTF:component_name instructs the compiler to create a
deployable CTF archive that is deployable in a MATLAB Production
Server instance.

mcc -? displays help.

Tip You can issue the mcc command either from the MATLAB
command prompt or the DOS or UNIX® command line.

9-6

mcc

Options -a Add to Archive

Add a file to the CTF archive using

-a filename

to specify a file to be directly added to the CTF archive. Multiple -a
options are permitted. MATLAB Compiler looks for these files on the
MATLAB path, so specifying the full path name is optional. These files
are not passed to mbuild, so you can include files such as data files.

If only a folder name is included with the -a option, the entire contents
of that folder are added recursively to the CTF archive. For example:

mcc -m hello.m -a ./testdir

In this example, testdir is a folder in the current working folder. All
files in testdir, as well as all files in subfolders of testdir, are added
to the CTF archive, and the folder subtree in testdir is preserved in
the CTF archive.

If a wildcard pattern is included in the file name, only the files in
the folder that match the pattern are added to the CTF archive and
subfolders of the given path are not processed recursively. For example:

mcc -m hello.m -a ./testdir/*

In this example, all files in ./testdir are added to the CTF archive and
subfolders under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

In this example, all files with the extension .m under ./testdir are
added to the CTF archive and subfolders of ./testdir are not processed
recursively.

All files added to the CTF archive using -a (including those that match
a wildcard pattern or appear under a folder specified using -a) that do
not appear on the MATLAB path at the time of compilation causes
a path entry to be added to the deployed application’s run-time path

9-7

mcc

so that they appear on the path when the deployed application or
component executes.

When files are included, the absolute path for the DLL and header files
is changed. The files are placed in the .\exe_mcr\ folder when the CTF
file is expanded. The file is not placed in the local folder. This folder
is created from the CTF file the first time the EXE file is executed.
The isdeployed function is provided to help you accommodate this
difference in deployed mode.

The -a switch also creates a .auth file for authorization purposes.
It ensures that the executable looks for the DLL- and H-files in the
exe_mcr\exe folder.

Caution

If you use the -a flag to include a file that is not on the MATLAB path,
the folder containing the file is added to the MATLAB dependency
analysis path. As a result, other files from that folder might be included
in the compiled application.

Note Currently, * is the only supported wildcard.

Note If the -a flag is used to include custom Java classes, standalone
applications work without any need to change the classpath as long
as the Java class is not a member of a package. The same applies for
JAR files. However, if the class being added is a member of a package,
the MATLAB code needs to make an appropriate call to javaaddpath to
update the classpath with the parent folder of the package.

9-8

mcc

-b Generate Excel Compatible Formula Function

Generate a Visual Basic® file (.bas) containing the Microsoft Excel
Formula Function interface to the COM object generated by MATLAB
Compiler. When imported into the workbook Visual Basic code, this
code allows the MATLAB function to be seen as a cell formula function.
This option requires MATLAB Builder™ EX.

9-9

mcc

-B Specify Bundle File

Replace the file on the mcc command line with the contents of the
specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle file filename should contain only mcc command-line
options and corresponding arguments and/or other file names. The file
might contain other -B options. A bundle file can include replacement
parameters for Compiler options that accept names and version
numbers. See for a list of the bundle files included with MATLAB
Compiler.

9-10

mcc

9-11

mcc

-C Do Not Embed CTF Archive by Default

Override automatically embedding the CTF archive in C/C++ and
main/Winmain shared libraries and standalone binaries by default. See
for more information.

9-12

mcc

-d Specified Folder for Output

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder.

9-13

mcc

9-14

mcc

-f Specified Options File

Override the default options file with the specified options file. Use

-f filename

to specify filename as the options file when calling mbuild. This
option lets you use different ANSI compilers for different invocations
of MATLAB Compiler. This option is a direct pass-through to the
mbuild script.

Note MathWorks recommends that you use mbuild -setup.

9-15

mcc

-g Generate Debugging Information

Include debugging symbol information for the C/C++ code generated
by MATLAB Compiler. It also causes mbuild to pass appropriate
debugging flags to the system C/C++ compiler. The debug option
lets you backtrace up to the point where you can identify if the
failure occurred in the initialization of MCR, the function call, or the
termination routine. This option does not let you debug your MATLAB
files with a C/C++ debugger.

9-16

mcc

-G Debug Only

Same as -g.

9-17

mcc

-I Add Folder to Include Path

Add a new folder path to the list of included folders. Each -I option
adds a folder to the beginning of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for
MATLAB files, followed by directory2. This option is important for
standalone compilation where the MATLAB path is not available.

9-18

mcc

-K Preserve Partial Output Files

Direct mcc to not delete output files if the compilation ends prematurely,
due to error.

The default behavior of mcc is to dispose of any partial output if the
command fails to execute successfully.

9-19

mcc

9-20

mcc

9-21

mcc

-M Direct Pass Through

Define compile-time options. Use

-M string

to pass string directly to the mbuild script. This provides
a useful mechanism for defining compile-time options, e.g.,
-M "-Dmacro=value".

Note Multiple -M options do not accumulate; only the rightmost -M
option is used.

9-22

mcc

-N Clear Path

Passing -N effectively clears the path of all folders except the following
core folders (this list is subject to change over time):

• matlabroot\toolbox\matlab

• matlabroot\toolbox\local

• matlabroot\toolbox\compiler\deploy

It also retains all subfolders of the above list that appear on the
MATLAB path at compile time. Including -N on the command line lets
you replace folders from the original path, while retaining the relative
ordering of the included folders. All subfolders of the included folders
that appear on the original path are also included. In addition, the -N
option retains all folders that you included on the path that are not
under matlabroot\toolbox.

9-23

mcc

-o Specify Output Name

Specify the name of the final executable (standalone applications only).
Use

-o outputfile

to name the final executable output of MATLAB Compiler. A suitable,
possibly platform-dependent, extension is added to the specified name
(e.g., .exe for Windows standalone applications).

9-24

mcc

-p Add Folder to Path

Use in conjunction with the required option -N to add specific folders
(and subfolders) under matlabroot\toolbox to the compilation
MATLAB path in an order sensitive way. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an
absolute path, it is assumed to be under the current working folder. The
rules for how these folders are included follow.

• If a folder is included with -p that is on the original MATLAB path,
the folder and all its subfolders that appear on the original path are
added to the compilation path in an order-sensitive context.

• If a folder is included with -p that is not on the original MATLAB
path, that folder is not included in the compilation. (You can use
-I to add it.)

If a path is added with the -I option while this feature is active (-N has
been passed) and it is already on the MATLAB path, it is added in the
order-sensitive context as if it were included with -p. Otherwise, the
folder is added to the head of the path, as it normally would be with -I.

9-25

mcc

-R Run-Time

Provide MCR run-time options. Use the syntax

-R option

to provide one of these run-time options.

Option Description

-logfile
filename

Specify a log file name.

-nodisplay Suppress the MATLAB nodisplay run-time warning.

-nojvm Do not use the Java Virtual Machine (JVM).

-startmsg Customizable user message displayed at MCR
initialization time. See .

-completemsg Customizable user message displayed when MCR
initialization is complete. See .

See for information about using mcc -R with initialization messages.

Note The -R option is available only for standalone applications. To
override MCR options in the other MATLAB Compiler targets, use the
mclInitializeApplication and mclTerminateApplication functions.
For more information on these functions, see .

Caution

When running on Mac OS X, if -nodisplay is used as one of the
options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

9-26

mcc

-S Create Singleton MCR

Create a singleton MCR.

The standard behavior for the MCR is that every instance of a class gets
its own base workspace. In a singleton MCR, all instances of a class
share the same base workspace.

9-27

mcc

-T Specify Target Stage

Specify the output target phase and type.

Use the syntax -T target to define the output type. Target values
are as follow.

Target Description

codegen Generate a C/C++ wrapper file.
The default is codegen.

compile:exe Same as codegen plus compiles
C/C++ files to object form suitable
for linking into a standalone
application.

compile:lib Same as codegen plus compiles
C/C++ files to object form
suitable for linking into a shared
library/DLL.

link:exe Same as compile:exe plus links
object files into a standalone
application.

link:lib Same as compile:lib plus
links object files into a shared
library/DLL.

9-28

mcc

-u Register COM Component for the Current User

Register COM component for the current user only on the development
machine. The argument applies only for generic COM component and
Microsoft Excel add-in targets only.

9-29

mcc

-v Verbose

Display the compilation steps, including:

• MATLAB Compiler version number

• The source file names as they are processed

• The names of the generated output files as they are created

• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information
about mbuild.

9-30

mcc

-w Warning Messages

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings. This table lists the syntaxes.

Syntax Description

-w list Generate a table that maps <string> to
warning message for use with enable,
disable, and error. , lists the same
information.

-w enable Enable complete warnings.

-w
disable[:<string>]

Disable specific warnings associated with
<string>. , lists the <string> values.
Omit the optional <string> to apply the
disable action to all warnings.

-w enable[:<string>] Enable specific warnings associated with
<string>. , lists the <string> values.
Omit the optional <string> to apply the
enable action to all warnings.

-w error[:<string>] Treat specific warnings associated with
<string> as an error. Omit the optional
<string> to apply the error action to all
warnings.

9-31

mcc

Syntax Description

-w off[:<string>]
[<filename>]

Turn warnings off for specific error
messages defined by <string>. You can
also narrow scope by specifying warnings
be turned off when generated by specific
<filename>s.

-w on[:<string>]
[<filename>]

Turn warnings on for specific error
messages defined by <string>. You can
also narrow scope by specifying warnings
be turned on when generated by specific
<filename>s.

It is also possible to turn warnings on or off in your MATLAB code.

For example, to turn warnings off for deployed applications (specified
using isdeployed) in your startup.m, you write:

if isdeployed
warning off

end

To turn warnings on for deployed applications, you write:

if isdeployed
warning on

end

9-32

mcc

9-33

mcc

-win32 Run in 32-Bit Mode

Use this option to build a 32-bit application on a 64-bit system only
when the following are true:

• You have a 32-bit installation of MATLAB.

• You use the same MATLAB installation root (matlabroot) for both
32-bit and 64-bit versions of MATLAB.

• You are running from a Windows command line.

9-34

mcc

-Y License File

Use

-Y license.lic

to override the default license file with the specified argument.

9-35

libraryCompiler

Purpose Build and package functions for use in external applications

Syntax libraryCompiler [-win32] [[[-build] | [-project]]project_name]

Description libraryCompiler opens the MATLAB shared library compiler for the
creation of a new compiler project

libraryCompiler project_name opens the MATLAB shared library
compiler app with the project preloaded.

libraryCompiler -build project_name runs the MATLAB shared
library compiler to build the specified project. The installer is not
generated.

libraryCompiler -package project_name runs the MATLAB shared
library compiler to build and package the specified project. The installer
is generated.

libraryCompiler -win32 instructs the compiler to build a 32-bit
application on a 64-bit system when you use the same MATLAB
installation root (matlabroot) for both 32-bit and 64-bit versions of
MATLAB.

Input
Arguments

project_name - name of the project to be compiled

Specify the name of a previously saved MATLAB Compiler project. The
project must be on the current path.

9-36

mps-check

Purpose Tests and diagnoses MATLAB Production Server instance for problems.

Syntax mps-check [--timeout seconds] host:port

Description mps-check sends a request to a MATLAB Production Server instance
and receives a status report that is used to identify issues that cause
the product to run less than optimally.

Information reported by mps-check to stdout include:

• Status of the server instance

• Port the HTTP interface is listening on

• Deployed archives for a server instance

Before using mps-check, you must deploy
mcrroot/bin/arch/mps_check.ctf to the server instance.

• mcrroot is the path to the MCR’s installation folder.

• arch is standard abbreviation for the system’s operating system and
hardware architecture.

Input
Arguments

• --timeout seconds— The time, in seconds, to wait for a response
from the server before timing out. The default is two minutes.

• host— The host name of the machine running the server instance.

• port — The port number on which the server instance listens for
requests.

DefinitionsServer Instance
An instance of the MATLAB Production Server. The files
contained in the folder created by mps-new, defined by path/,
comprise one configuration of the MATLAB Production Server
product.

9-37

mps-check

Examples Display diagnostic information for the server instance running on port
9910 of the local computer.

mps-check localhost:9910

Connecting to localhost:9910
Connected
Sending HTTP request
HTTP request sent
HTTP response received
MPS status check completed successfully

9-38

mps-license-reset

Purpose Forces server to immediately attempt license checkout

Syntax mps-license-reset [-C path/]server_name

Description mps-license-reset [-C path/]server_name triggers the server to
checkout a license immediately, regardless of the current license status.
License keys that are currently checked out are checked in first.

Tips • Run this command at your operating system prompt.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted,
the current working folder and its parents are searched to find
the server instance.

server_name

Server checking out license

DefinitionsServer Instance
An instance of the MATLAB Production Server. The files
contained in the folder created by mps-new, defined by path/,
comprise one configuration of the MATLAB Production Server
product.

Examples Create a new server instance and display the status of each folder in
the file hierarchy, as the server instance is created:

mps-license-reset -C /tmp/server_2

See Also mps-status |

Related
Examples

• “Forcing a License Checkout Using mps-license-reset” on page 5-10

9-39

mps-license-reset

Concepts • “License Management for MATLAB® Production Server™” on page
5-9

9-40

mps-new

Purpose Create server instance

Syntax mps-new [path/]server_name [-v]

Description mps-new [path/]server_name [-v] makes a new folder at path and
populates it with the default folder hierarchy for a .

Each server instance can be configured, started, monitored, and stopped
independently.

Tips • Before creating a server instance, ensure that no file or folder with
the specified path currently exists on your system.

• After issuing mps-new, you must issue mps-start to start the server
instance.

• Run this command at your operating system prompt.

Input
Arguments

path/

Path to server instance.

server_name

Name of the server to be created.

If you are creating a server instance in the current working folder,
you do not need to specify a full path. Only specify the server
name.

-v

Displays status of each folder in the file hierarchy, created to form
a server instance

DefinitionsServer Instance
An instance of the MATLAB Production Server. The files
contained in the folder created by mps-new, defined by path/,
comprise one configuration of the MATLAB Production Server
product.

9-41

mps-new

Examples Create a new server instance and display the status of each folder in
the file hierarchy, as the server instance is created:

mps-new /tmp/server_1 -v

Example Output

server_1/.mps-version...ok
server_1/config/...ok
server_1/config/main_config...ok
server_1/endpoint/...ok
server_1/auto_deploy/...ok
server_1/.mps-socket/...ok
server_1/log/...ok
server_1/pid/...ok

See Also mps-status | mps-start |

Related
Examples

• “Server Creation” on page 5-11

Concepts • “Server Overview” on page 5-2

9-42

mps-restart

Purpose Stop and start server instance

Syntax mps-restart [-C path/]server_name [-f]

Description mps-restart [-C path/]server_name [-f] stops a server instance,
then restarts the same server instance. Issuing mps-restart is
equivalent to issuing the mps-stop and mps-start commands in
succession.

Tips • After issuing mps-restart, issue the mps-status command to verify
the server instance has started.

• If you are restarting a server instance in the current working folder,
you do not need to specify a full path. Only specify the server name.

• Run this command at your operating system prompt.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted, the
current working folder and its parents are searched to find the
server instance. If you are restarting a server instance in the
current working folder, you do not need to specify a full path.
Only specify the server name.

server_name

Name of the server to be restarted.

-f

Force success even if the server instance is stopped. Restarting a
stopped instance returns an error.

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained in
the folder created by mps-new comprise a single configuration of the
MATLAB Production Server product.

9-43

mps-restart

Examples Restart a server instance named server_1, located in folder tmp. Force
successful completion of mps-restart.

mps-restart -f -C /tmp/server_1

See Also mps-start | mps-stop | mps-status |

9-44

mps-setup

Purpose Sets up server environment

Syntax mps-setup [mcrroot]

Description mps-setup [mcrroot] sets location of MATLAB Compiler Runtime
(MCR) and other start-up options.

The mps-setup command sets the default path to the MATLAB
Compiler Runtime (MCR) for all server instances you create with the
product. This is equivalent to presetting the --mcr-root option in each
server’s main_config configuration file.

If a default value already exists in server_name/config/mcrroot, it
is updated with the value specified when you run the command line
wizard.

Tips • Run mps-setup from the script folder. Alternatively, add the script
folder to your system PATH environment variable to run mps-setup
from any folder on your system.

• Run mps-setup without arguments and it will search your system
for MCR instances you may want to use with MATLAB Production
Server.

• Run mps-setup by passing the path to the MATLAB Compiler
Runtime (MCR) as an argument. This method is ideal for
non-interactive (silent) installations.

Input
Arguments

mcrroot

Specify a path to the MATLAB Compiler Runtime if running
mps-setup in non-interactive, or silent, mode.

DefinitionsServer Instance
An instance of the MATLAB Production Server. The files
contained in the folder created by mps-new, defined by path/,
comprise one configuration of the MATLAB Production Server
product.

9-45

mps-setup

Examples Run mps-setup non-interactively, by passing in a path to the MATLAB
Compiler Runtime (MCR) instance that you want MATLAB Production
Server to use.

mps-setup "C:\Program Files\MATLAB\MATLAB
Compiler Runtime\mcrver"

mcrver is the version of the MCR to use.

See Also mps-start | mps-new | mps-status |

Concepts • “Run mps-setup to Set Location of MATLAB Compiler Runtime
(MCR)” on page 5-6

9-46

mps-start

Purpose Starts server instance

Syntax mps-start [-C path/]server_name [-f]

Description mps-start [-C path/]server_name [-f] starts a server instance

Tips • After issuing mps-start, issue the mps-status command to verify
the server instance has STARTED.

• If you are starting a server instance in the current working folder,
you do not need to specify a full path. Only specify the server name.

• Run this command at your operating system prompt.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted,
the current working folder and its parents are searched to find
the server instance.

server_name

Name of the server to be started.

-f

Force success even if the server instance is currently running.
Starting a running server instance is considered an error.

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained in
the folder created by mps-new comprise a single configuration of the
MATLAB Production Server product.

Examples Start a server instance named server_1, located in folder tmp. Force
successful completion of mps-start.

mps-start -f -C /tmp/server_1

9-47

mps-start

See Also mps-stop | mps-restart | mps-status |

Related
Examples

• “Start a Server” on page 5-28

Concepts • “Server Startup” on page 5-27
• “Server Overview” on page 5-2

9-48

mps-status

Purpose Displays status of server instance

Syntax mps-status [-C path/]server_name

Description mps-status [-C path/]server_name displays the status of the server
(STARTED, STOPPED), along with a full path to the server instance.

Tips • If you are creating a server instance in the current working folder,
you do not need to specify a full path. Only specify the server name.

• If the server is running, the status of the license associated with
that server will also be displayed.

• Run this command at your operating system prompt.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted,
the current working folder and its parents are searched to find
the server instance.

server_name

Server to be queried for status

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained
in the folder created by mps-new, defined by path/, comprise one
configuration of the MATLAB Production Server product.

Examples Display status of server instance server_1, residing in tmp folder.

mps-status -C /tmp/server_1

Example Output

If server is running and running with a valid license:

'/tmp/server_1' STARTED

9-49

mps-status

license checked out

If server is not running:

'/tmp/server_1' STOPPED

See Also mps-start | mps-stop | mps-restart | mps-which |

Related
Examples

• “Start a Server” on page 5-28

Concepts • “Server Startup” on page 5-27
• “Server Overview” on page 5-2
• “License Server Status Information” on page 5-31

9-50

mps-stop

Purpose Stop server instance

Syntax mps-stop [-C path/]server_name [-f] [-v]
[--timeout hh:mm:ss]

Description mps-stop [-C path/]server_name [-f] [-v] [--timeout
hh:mm:ss] closes HTTP server socket and all open client connections
immediately. All function requests that were executing when the
command was issued are allowed to complete before the server shuts
down.

Tips • After issuing mps-stop, issue the mps-status command to verify
the server instance has STOPPED.

• If you are stopping a server instance in the current working folder,
you do not need to specify a full path. Only specify the server name.

• Run this command at your operating system prompt.

• Note that the timeout option (--timeout hh:mm:ss) is specified with
two (2) dashes, not one dash.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted,
the current working folder and its parents are searched to find
the server instance.

server_name

Name of the server to be stopped.

-f

Force success even if the server instance is not currently stopped.
Stopping a stopped instance is considered an error.

-v

Displays system messages relating to termination of server
instance.

9-51

mps-stop

--timeout hh:mm:ss

Set a limit on how long mps-stop will run before returning either
success or failure. For example, specifying --timeout 00:02:00
indicates that mps-stop should exit with an error status if the
server takes longer than two (2) minutes to shut down. The
instance continues to attempt to terminate even if mps-stop times
out. If this option is not specified, the default behavior is to wait
as long as necessary (infinity) for the instance to stop.

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained
in the folder created by mps-new, defined by path/, comprise one
configuration of the MATLAB Production Server product.

Examples Stop server instance server_1, located in tmp folder. Force successful
completion of mps-stop. Timeout with an error status if mps-stop takes
longer than three (3) minutes to complete.

In this example, the verbose (-v) option is specified, which produces
an output status message.

mps-stop -f -v -C /tmp/server_1 --timeout 00:03:00

Example Output

waiting for stop... (timeout = 00:03:00)

See Also mps-start | mps-restart | mps-new | mps-status |

9-52

mps-support-info

Purpose Displays licensing and configuration information of a MATLAB
Production Server instance

Syntax mps-support-info [-C [[instance_path] | [server_name]]]

Description mps-support-info displays licensing and configuration information of
a MATLAB Production Server instance.

Input
Arguments

• -C instance_path — The path to where the server instance is
installed.

• -C server_name— The name of the server instance to locate in the
current folder.

DefinitionsServer Instance
An instance of the MATLAB Production Server. The files
contained in the folder created by mps-new, defined by path/,
comprise one configuration of the MATLAB Production Server
product.

Examples Display licensing and configuration information of server instance
fred, residing in / folder.

mps-status -C /fred

Instance Version: 1.0
License Number: UNKNOWN -- MPS stopped
MPS Version: UNKNOWN -- MPS stopped
Available License Number: 857812
Client Version: 1.0.1 R2013a
Operating System: Microsoft Windows 7 Enterprise Edition (bu
Number of CPU cores: 8
CPU Info: Intel(R) Xeon(R) CPU W3550 @ 3
Memory: 11.9915 GB (1.2574e+007 KB)

9-53

mps-which

Purpose Display path to server instance that is currently using the configured
port.

Syntax mps-which [-C path/]server_name

Description mps-which [-C path/]server_name is useful when running multiple
server instances on the same machine. If you accidently leaves a server
instance running and try to start another which is configured to use
the same port number, the latter server instance will fail to start,
displaying an address-in-use error. mps-which can be used to identify
which server instance is using the port.

Tips • If you are creating a server instance in the current working folder,
you do not need to specify a full path. Only specify the server name.

• Run this command at your operating system prompt.

Input
Arguments

-C path/

Specify a path to the server instance. If this option is omitted,
the current working folder and its parents are searched to find
the server instance.

server_name

Server to be queried for path.

Definitions Server Instance

An instance of the MATLAB Production Server. The files contained
in the folder created by mps-new, defined by path/, comprise one
configuration of the MATLAB Production Server product.

Examples server_1 and server_2, both residing in folder tmp, are configured to
use to same port, defined by --http in the main_config configuration
files. However, the port can only be allocated to one server.

Run mps-which for both servers:

9-54

mps-which

mps-which -C /tmp/server_1

mps-which -C /tmp/server_2

Example Output

In both cases, the server that has allocated the configured port displays
(server_1):

/tmp/server_1

See Also mps-status |

9-55

mps-which

9-56

A

Data Conversion Rules

• “Conversion of Java Types to MATLAB Types” on page A-2

• “Conversion of MATLAB Types to Java Types” on page A-4

• “Conversion Between MATLAB Types and C# Types” on page A-6

A Data Conversion Rules

Conversion of Java Types to MATLAB Types

Value Passed to Java
Method is:

Input type Received by
MATLAB is:

Dimension of Data in
MATLAB is:

java.lang.Byte,
byte

{1,1}

byte[] data

int8

{1, data.length}

java.lang.Short
short

{1,1}

short[] data

int16

{1, data.length}

java.lang.Integer,
int

{1,1}

int[] data

int32

{1, data.length}

java.lang.Long,
long

{1,1}

long[] data

int64

{1, data.length}

java.lang.Float,
float

{1,1}

float[] data

single

{1, data.length}

java.lang.Double,
double

{1,1}

double[] data

double

{1, data.length}

java.lang.Boolean,
boolean

{1,1}

boolean[] data

logical

{1, data.length}

java.lang.Character,
char

{1,1}

char[] data {1, data.length}

java.lang.String data

char

{1, data.length()}

A-2

Conversion of Java Types to MATLAB Types

Value Passed to Java
Method is:

Input type Received by
MATLAB is:

Dimension of Data in
MATLAB is:

java.lang.String[] data {1, data.length}

java.lang.Object[] data

cell

{1, data.length}

{ data.length,
dimensions(T[0]) }, if T is
an array

T[] data 1 MATLAB type for T 1

{ 1, data.length}, if T is not
an array

1 Where T represents any supported MATLAB type. If T is an array type, then
all elements of data must have exactly the same length

1.

A-3

A Data Conversion Rules

Conversion of MATLAB Types to Java Types

When MATLAB Returns: Dimension of Data in
MATLAB is:

MATLAB Data Converts To
Java Type:

{1,1} byte,
java.lang.Byte

{1,n} , {n,1} byte[n], java.lang.Byte[n]

int8,
uint8

{m,n,p,...} byte[m][n][p]... ,
java.lang.Byte[m][n][p]...

{1,1} short, java.lang.Short

{1,n} , {n,1} short[n], java.lang.Short[n]

int16,
uint16

{m,n,p,...} short[m][n][p]... ,
java.lang.Short[m][n][p]...

{1,1} int, java.lang.Integer

{1,n} , {n,1} int[n],
java.lang.Integer[n]

int32,
uint32

{m,n,p,...} int[m][n][p]... ,
java.lang.Integer[m][n][p]...

{1,1} long, java.lang.Long

{1,n} , {n,1} long[n],
java.lang.Long[n]

int64,
uint64

{m,n,p,...} long[m][n][p]... ,
java.lang.Long[m][n][p]...

{1,1} float, java.lang.Float

{1,n} , {n,1} float[n],
java.lang.Float[n]

single

{m,n,p,...} float[m][n][p]... ,
java.lang.Float[m][n][p]...

A-4

Conversion of MATLAB Types to Java Types

When MATLAB Returns: Dimension of Data in
MATLAB is:

MATLAB Data Converts To
Java Type:

{1,1} double, java.lang.Double

{1,n} , {n,1} double[n],
java.lang.Double[n]

double

{m,n,p,...} double[m][n][p]... ,
java.lang.Double[m][n][p]...

{1,1} boolean, java.lang.Boolean

{1,n} , {n,1} boolean[n],
java.lang.Boolean[n]

logical

{m,n,p,...} boolean[m][n][p]... ,
java.lang.Boolean[m][n][p]...

{1,1} char, java.lang.Character

{1,n} , {n,1} java.lang.String

char

{m,n,p,...} char[m][n][p]... ,
java.lang.Character[m][n][p]...

{1,1} java.lang.String

{1,n} , {n,1} java.lang.String[n]

cell
(containing only strings)

{m,n,p,...} java.lang.String[m][n][p]...

{1,1} java.lang.Object

{1,n} , {n,1} java.lang.Object[n]

cell
(containing multiple types)

{m,n,p,...} java.lang.Object[m][n][p]...

A-5

A Data Conversion Rules

Conversion Between MATLAB Types and C# Types

This MATLAB type.... Is equivalent to this C# type....

uint8 byte

int8 sbyte

uint16 ushort

int16 short

uint32 uint

int32 int

uint64 ulong

int64 long

single float

double double

logical bool

char System.String, char

cell (strings only) Array of System.String

cell (heterogeneous data types) Array of System.Object

struct A .NET struct or class with public
fields or public properties

Note Multidimensional arrays of above C# types are supported. Jagged
arrays are not supported.

A-6

B

MATLAB Production Server
.NET Client API Classes
and Methods

• “MATLABException” on page B-2

• “MATLABStackFrame” on page B-5

• “MWClient” on page B-8

• “MWHttpClient” on page B-10

• “MWStructureListAttribute” on page B-13

B MATLAB® Production Server™ .NET Client API Classes and Methods

MATLABException

About MATLABException
Use MATLABException to handle MATLAB exceptions thrown by .NET
interfaces

Errors are thrown during invocation of MATLAB function associated with a
MATLAB Production Server request initiated by MWHttpClient.

MATLAB makes the following information available in case of an error:

• MATLAB stack trace

• Error ID

• Error message

Derived from Exception

Members

Constructor

public MATLABException(
string, message
string, identifier
IList<MATLABStackFrame> stackList

);

Creates an instance of MATLABException using MATLAB error message,
error identifier, and a list of MATLABStackFrame, representing MATLAB stack
trace associated with a MATLAB error.

B-2

MATLABException

Constructor Parameters

string, message
Error message from MATLAB

string, identifier

Error identifier used in MATLAB

IList<MATLABStackFrame> stackList

List of MATLABStackFrame representing MATLAB stack trace. An
unmodifiable copy of this list is made

Public Instance Properties

MATLABStackTrace
Returns list of MATLABStackFrame

Gets MATLAB stack with 0 or more MATLABStackFrame.

Each stack frame provides information about MATLAB file, function name,
and line number. The output list of MATLABStackFrame is unmodifiable.

Message

Returns detailed MATLAB message corresponding to an error

MATLABIdentifier

Returns identifier used when error was thrown in MATLAB

MATLABStackTraceString

Returns string from stack trace

Public Instance Methods
None

B-3

B MATLAB® Production Server™ .NET Client API Classes and Methods

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MATLABStackFrame

B-4

MATLABStackFrame

MATLABStackFrame

About MATLABStackFrame
Use MATLABStackFrame to return an element in MATLAB stack trace obtained
using MATLABException.

MATLABStackFrame contains:

• Name of MATLAB file

• Name of MATLAB function in MATLAB file

• Line number in MATLAB file

Members

Constructor

public MATLABStackFrame(
string, file
string , name
int line

);

Construct MATLABStackFrame using file name, function name, and line
number

Constructor Parameters

string, file
Name of the file

string, name

Name of function in the file

B-5

B MATLAB® Production Server™ .NET Client API Classes and Methods

int line

Line number in MATLAB file

Public Instance Properties

File
Returns complete path to MATLAB file

Name

Returns name of a MATLAB function in a MATLAB file

For a MATLAB file with only one function, Name is equivalent to the MATLAB
file name, without the extension. The name will be different from the
MATLAB file name if it is a sub function in a MATLAB file.

Line

Returns a line number in a MATLAB file

Public Instance Methods

ToString

public override string ToString()

Returns a string representation of an instance of MATLABStackFrame

Equals

public override bool Equals(object obj)

Returns true if two MATLABStackFrame instances have the same file name,
function name, and line number

GetHashCode

public override int GetHashCode()

B-6

MATLABStackFrame

Returns hash value for an instance of MATLABStackFrame

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MATLABException

B-7

B MATLAB® Production Server™ .NET Client API Classes and Methods

MWClient

About MWClient
Interface of MWHttpClient, providing client-server communication for
MATLAB Production Server.

Members

Public Instance Methods

CreateProxy

T CreateProxy<T>(Uri url);

Returns a proxy object that implements interface T.

Creates a proxy object reference to the generic CTF archive hosted by the
server. The CTF archive is identified by a URL.

The methods in returned proxy object match the names of MATLAB functions
in the CTF archive that the user wants to deploy, as well as inputs and
outputs consistent with MATLAB function types and values.

When these methods are invoked, the proxy object:

1 Establishes a client-server connection

2 Sends MATLAB function inputs to the server

3 Receives the results

Parameter List

• T — Type of the returned object

• url — URL to the CTF archive, with the form of
http://localhost:port_number/CTF_archive_name_without_extension

B-8

MWClient

Close

void Close();

Closes connection with the server.

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MWHttpClient

B-9

B MATLAB® Production Server™ .NET Client API Classes and Methods

MWHttpClient

About MWHttpClient
Implements MWClient interface.

Establishes HTTP-based connection between MATLAB Production Server
client and server. The client and server can be hosted on the same machine,
or different machines with different platforms.

MWHttpClient allows the client to invoke MATLAB functions exported by a
generic CTF archive hosted by the server. The CTF archive is made available
to the client as a URL.

A server can host multiple CTF archives since each CTF has a unique URL.

In order to establish client-server communication, the following is required:

• URL to the CTF archive in the form:
http://localhost:port_number/CTF_archive_name_without_extension

• Names of MATLAB functions exported by the CTF archive

• Information about the number of inputs and outputs for each MATLAB
function and their types

• A user-written interface including:

- Public methods with same names matching those of the MATLAB
functions exported by the CTF. Methods must be consistent with
MATLAB functions in terms of the numbers of inputs and outputs and
their types

- Each method in this interface should declare the exceptions:

• Mathworks.MPS.Client.MATLABException— Represents MATLAB
errors

• System.Net.WebException— Represents any transport errors during
client-server communication

- There can be overloads of a method in the interface, depending on the
MATLAB function that the method is representing

B-10

MWHttpClient

- Interface name does not have to match the CTF archive name

Members

Constructor

public class MWHttpClient : MWClient

Creates an instance of MWHttpClient

Public Instance Methods

CreateProxy

T CreateProxy<T>(Uri url);

Returns a proxy object that implements interface T.

Creates a proxy object reference to the generic CTF archive hosted by the
server. The CTF archive is identified by a URL.

The methods in returned proxy object match the names of MATLAB functions
in the CTF archive that the user wants to deploy, as well as inputs and
outputs consistent with MATLAB function types and values.

When these methods are invoked, the proxy object:

1 Establishes a client-server connection

2 Sends MATLAB function inputs to the server

3 Receives the results

Parameter List

• T — Type of the returned object

• url — URL to the CTF archive, with the form of
http://localhost:port_number/CTF_archive_name_without_extension

B-11

B MATLAB® Production Server™ .NET Client API Classes and Methods

Close

void Close();

Closes connection with the server.

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MWClient

B-12

MWStructureListAttribute

MWStructureListAttribute

About MWStructureListAttribute
MWStructureListAttribute provides .NET types, which are convertible to
and from MATLAB structures.

MWStructureList is used when a variable of declared type System.Object
(scalar or multi-dimensional) either refers to or contains another
MATLAB-struct-convertible type (a user-defined .NET struct or class) at
run time.

MWStructureListAttribute allows you to scope data conversion at field,
property, method, or interface level.

Members

Constructor

public MWStructureListAttribute(
params Type[] structTypes

);

Construct MWStructureListAttribute using an array of user-defined types
(structTypes).

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

B-13

B MATLAB® Production Server™ .NET Client API Classes and Methods

B-14

Index

IndexSymbols and Numerics
32-bit and 64-bit Compatibility

Considerations 5-5

B
Bond Pricing Tool Example 7-8 8-10

C
Command Line Wizard 5-6
Configuration file

Editing 5-24

D
debugging

-G option flag 9-17
Deployable CTF Archives

Sharing with clients 5-30
deploytool function 9-2

G
-G option flag 9-17

I
Installation 5-5
Installation Wizard

Running 5-5

J
Java Client

Coding Best Practices 7-2
Configuring client timeout value for 7-5
Data Conversion with Java and MATLAB

types 7-31
Freeing system resources 7-5
Handling exceptions 7-5

Javadoc
Location of 7-7

Locally scoped instance of 7-3
Managing client lifecycle of 7-3
Managing system resources 7-5
Marshaling MATLAB struct types 7-23
Marshaling MATLAB Structs 7-23
Marshaling MATLAB Structures 7-23
Multiple outputs 7-19
Prerequisites 7-2
Server implementation of 7-3
Variable-length inputs and outputs 7-21

Java types
Conversion to MATLAB types A-2

L
License Center

Obtaining licenses through 5-9
License Checkout

Forcing with mps-license-reset server
command 5-10

License Server
Grace period 5-31
Status messages

Meaning of 5-31
Timeout 5-31
Verifying status of 5-10

License Server Options 5-9
Licensing Wizard

Running 5-5

M
-M option flag 9-22
main_config

Critical options 5-24
Editing 5-24

MATLAB Compiler Runtime (MCR)
Compatibility with version of MATLAB 5-6

Index-1

Index

Configuration file
About 5-24

Downloading 5-6
Downloading of 5-14
Installation of 5-14
Installing 5-6
main_config

About 5-24
Specifying installed MCR to server

instance 5-23
Version considerations 5-6

MATLAB Data Types
Unsupported types for client and server

marshaling 2-7 6-4
MATLAB Production Server

Basic example with GUI front-end 7-8 8-10
Installing 32-Bit version on 64-Bit

systems 5-5
Java Client 7-1
Server Overview (Server Component) 5-2

MATLAB types
Conversion to Java types A-4

MATLAB Types
Conversion to C# types A-6

MATLABException B-2
MATLABStackFrame B-5
mcc 9-3
mps-license-reset 9-39
mps-new 9-41
mps-restart 9-43
mps-setup 5-6 9-45

Running in a silent installation 5-7
Running in non-interactive mode 5-7

mps-setup Command Line Wizard 5-6
Running in a silent installation 5-7
Running in non-interactive mode 5-7
setting --mcr-root 5-6
setting location of MCR 5-6

mps-start 5-27 9-47
mps-status 5-31 9-49

Using to verify license server status 5-10
mps-stop 9-51
mps-which 9-54
MWClient B-8
MWHttpClient B-10
MWStructureListAttribute B-13

N
.NET Client

API documentation
Location of 8-5

Best Coding Practices 8-2
Configuring client timeout value for 8-4
Data conversion with .NET/C# and MATLAB

types 8-34
Freeing system resources 8-3
Handling exceptions 8-3
Managing system resources 8-3
Marshaling MATLAB struct types 8-22
Marshaling MATLAB Structs 8-22
Marshaling MATLAB Structures 8-22
Multiple outputs 8-15
Preparing your Microsoft Visual Studio

environment 8-6
Prerequisites 8-2
Variable inputs and outputs 8-17

P
pass through

-M option flag 9-22

S
Server

Basics of server processing 5-2
Best Practices for log management 5-37
Common Error Messages and

Resolutions 5-38
Creation a new instance of 5-12

Index-2

Index

Creation of 5-12
Customizing configuration file 5-22
Customizing main_config 5-22
Diagnosing a problem 5-34
Diagnostic tools 5-35
Endpoint files 5-37
Log archive settings 5-36
Log files 5-35
Log retention settings 5-36
--log-archive-max-size 5-36
--log-archive-root 5-36
--log-rotation-size 5-36
main.log 5-36
--num-threads

throughput management 5-3
--num-workers

Capacity management 5-3
Number of workers

Capacity management 5-3
Prerequisites for creation 5-11
Process Identification Files (PID files) 5-37

Setting log file detail levels. 5-37
Starting up 5-28
Verifying if started 5-32
Verifying if stopped 5-32
Verifying status of 5-32
Workload management 5-2

Server Configuration File (main_config)
License Server Options 5-9
Specifying License Server Options 5-9
Verifying License Server Options 5-9

Server Startup
using mps-start command 5-27

Server Status Verification
using mps-status command 5-31

W
Windows Interactive Error Reporting

Disabling 5-8
DontShowUI 5-8

Index-3

	toc
	Getting Started with MATLAB Production Server
	MATLAB Production Server Product Description
	Key Features

	Roles in Deploying to MATLAB Production Server
	MATLAB Production Server Workflow
	Create a Deployable Archive for MATLAB Production Server
	Start a MATLAB Production Server Instance
	Overview
	Install MATLAB Production Server
	Install MATLAB Compiler Runtime (MCR)
	Create a Server Instance
	Configure the Server Instance
	Start the Server

	Share a Deployable CTF Archive on the Server Instance
	Create a Java Application That Calls the Deployed Function
	Create a C# .NET Application That Calls a Deployed Function
	Create a Microsoft Visual Studio Project
	Create a Reference to the Client Run-Time Library
	Design the .NET Interface in C#
	Write, Build, and Run the .NET Application
	C# Namespace Magic

	Write Deployable MATLAB Code
	Deployment Coding Guidelines
	State-Dependent Functions
	Does My MATLAB Function Carry State?
	Defensive Coding Practices
	Reset System-Generated Values in the Deployed Application
	Validate Global or Persistent Variable Values
	Ensure Access to Data Caches
	Use Simple Data Types When Possible
	Avoid Using MATLAB Callback Functions

	Techniques for Preserving State

	Deploying MATLAB Functions Containing MEX Files
	Unsupported MATLAB Data Types for Client and Server Marshaling

	Create a Deployable CTF Archive from MATLAB Code
	Compile a Deployable CTF Archive with the Library Compiler App
	Compile a Deployable CTF Archive from the Command Line
	Execute Compiler Projects with deploytool
	Compile a Deployable CTF Archive with mcc

	Modifying Deployed Functions

	Customizing a Compiler Project
	Customizing the Installer
	Changing the Application Icon
	Adding Application Information
	Changing the Splash Screen
	Changing the Installation Path
	Changing the Application Logo
	Editing the Installation Notes

	Manage the Required Files Compiled into a Project
	Dependency Analysis
	Using the Compiler Apps
	Using mcc

	Specify Additional Files to Be Installed with the Application

	Server Management
	Server Overview
	What is a Server?
	How Does a Server Manage Work?

	Install MATLAB Production Server
	Prerequisite for Windows Installations
	Ensure Deployment Architecture Compatibility
	Installing 32-Bit Version on 64-Bit Systems

	Run the Installation and Licensing Wizards
	Download and Install the MATLAB Compiler Runtime (MCR)
	Compatibility Considerations for MATLAB Compiler Runtime (MCR) a

	Run mps-setup to Set Location of MATLAB Compiler Runtime (MCR)
	Run mps-setup in Non-Interactive Mode for Silent Install

	Disable Windows Interactive Error Reporting (Optional)

	License Management for MATLAB Production Server
	Specify or Verify License Server Options in Server Configuration
	Verify Status of License Server using mps-status
	Forcing a License Checkout Using mps-license-reset

	Server Creation
	Prerequisites
	Procedure
	Create a Server
	For More Information

	MATLAB Compiler Runtime (MCR) Installation
	Install the MATLAB Compiler Runtime (MCR)

	Secure a Server
	Overview
	Enabling Security
	Configuring Client Authentication
	Specifying Access to MATLAB Programs
	Adjusting Security Protocols
	Improving Start Up Time when Security is Activated
	Security Configuration Reference

	Configuration File Customization
	Prerequisites
	Procedure
	Use mps-setup to Locate Installed MCRs and Set --mcr-root

	Specify the Installed MCR to the Server Instance
	About the Server Configuration File (main_config)

	For More Information

	Server Startup
	Prerequisites
	Procedure
	Start a Server
	For More Information

	Share the Deployable CTF Archive
	Server Status Verification
	Prerequisite
	Procedure
	License Server Status Information

	Verify Status of a Server
	For More Information

	Server Troubleshooting
	Procedure
	Diagnose a Server Problem
	Server Diagnostic Tools
	Log Files
	Process Identification Files (PID Files)
	Endpoint Files

	Common Error Messages and Resolutions
	(404) Not Found
	Error: Bad MCR Instance
	Error: Server Instance not Specified
	Error: invalid target host or port
	Error: HTTP error: HTTP/x.x 404 Component not found
	For More Information

	Client Programming
	MATLAB Production Server Examples Available on MATLAB Central
	Create a MATLAB Production Server Client
	Unsupported MATLAB Data Types for Client and Server Marshaling

	Java Client Programming
	Java Client Coding Best Practices
	Java Client Prerequisites
	Manage Client Lifecycle
	Locally Scoped Instance
	Servlet Implementation
	Handling Java Client Exceptions
	Managing System Resources
	Configure Client Timeout Value for Connection with a Server
	Configuring Number of Reusable Connections

	Where to Find the Javadoc

	Bond Pricing Tool with GUI for Java Client
	Objectives
	Step 1: Write MATLAB Code
	Step 2: Create a Deployable CTF Archive with the Library Compile
	Step 3: Share the Deployable CTF Archive on a Server
	Step 4: Create the Java Client Code
	Declare Java Method Signatures Compatible with MATLAB Functions
	Instantiate MWClient, Create Proxy, and Specify Deployable CTF A
	Use dispose() Consistently to Free System Resources

	Step 5: Build the Client Code and Run the Example

	Accessing Secure Programs Using HTTPS
	Overview
	Configuring the Client’s Environment for SSL
	Establishing an HTTPS Connection
	Advanced Security Configuration
	SSL API Configuration
	Override Default Hostname Verification
	Use Additional Server Authentication

	Code Multiple Outputs for Java Client
	Code Variable-Length Inputs and Outputs for Java Client
	Marshal MATLAB Structures (Structs) in Java
	Marshaling a Struct Between Client and Server
	Java Class Student
	Java Interface StudentSorter
	Java ClientExample Class
	Defining MATLAB Structures Only Used as Inputs
	Java Class Student with Struct as Input
	Defining MATLAB Structures Only Used as an Output
	Java Class Student with Struct as Output
	Defining MATLAB structures for output using @ConstructorProperti
	Defining MATLAB Structures Used as Both Inputs and Outputs

	Data Conversion with Java and MATLAB Types
	Working with MATLAB Data Types
	Scalar Numeric Type Coercion
	Dimensionality in Java and MATLAB Data Types
	Dimension Coercion
	Padding
	Truncation

	Empty (Zero) Dimensions
	Passing Java Empties to MATLAB
	Passing MATLAB Empties to Java
	Boxed Types
	Signed and Unsigned Types in Java and MATLAB Data Types

	.NET Client Programming
	.NET Client Coding Best Practices
	.NET Client Prerequisites
	Handling Exceptions
	Managing System Resources
	Using IDisposable to Release Resources Consumed by MWHttpClient

	Configure Client Timeout Value for Connection with a Server
	Data Conversion for .NET and MATLAB Types
	Where to Find the API Documentation

	Preparing Your Microsoft Visual Studio Environment
	Creating a Microsoft Visual Studio Project
	Creating a Reference to the Client Run-Time Library

	Access Secure Programs Using HTTPS
	Overview
	Configure the Client Environment for SSL
	Establish a Secure Proxy Connection
	Establish a Secure Connection using Client Authentication
	Implement the MWSSLConfig Interface
	Establish the Secure Connection

	Implementing Advanced Authentication Features

	Bond Pricing Tool with GUI for .NET Client
	Objectives
	Step 1: Write MATLAB Code
	Step 2: Create a Deployable CTF Archive with the Library Compile
	Step 3: Share the Deployable CTF Archive on a Server
	Step 4: Create the C# Client Code
	Declare C# Method Signatures Compatible with MATLAB Functions Yo
	Instantiate MWClient, Create Proxy, and Specify Deployable CTF A
	Use Dispose() Consistently to Free System Resources

	Step 5: Build the Client Code and Run the Example

	Code Multiple Outputs for C# .NET Client
	MATLAB Function multipleoutputs
	C# Interface MultipleOutputsExample
	C# Method TryMultipleOutputs
	Code Variable-Length Inputs and Outputs for .NET Client
	Using varargin with .NET Client
	MATLAB Function varargintest
	C# Interface VararginTest
	C# Method TryVarargin
	Using varargout with .NET Client
	MATLAB Function varargouttest
	C# Interface VarargoutTest
	C# Method TryVarargout

	Marshal MATLAB Structures (structs) in C#
	Creating a MATLAB Structure
	Using .NET Structs and Classes
	.NET Struct Student
	C# Class SimpleStruct
	MATLAB Function sortstudents
	C# Interface StudentSorter
	C# Class ClientExample
	Using Attributes
	MATLAB Function outcell
	.NET struct Types Struct1 and Struct2
	Method Attributes
	Interface Attributes
	Fields and Property Attributes

	Data Conversion with C# and MATLAB Types
	Working with MATLAB Data Types
	Scalar Numeric Type Coercion
	Dimension Coercion
	Padding
	Truncation

	Empty (Zero) Dimensions
	Passing C# Empties to MATLAB
	Passing MATLAB Empties to C#

	Commands — Alphabetical List
	Data Conversion Rules
	Conversion of Java Types to MATLAB Types
	Conversion of MATLAB Types to Java Types
	Conversion Between MATLAB Types and C# Types

	MATLAB Production Server .NET Client API Classes and Methods
	MATLABException
	About MATLABException
	Members
	Constructor
	Constructor Parameters
	string, message
	string, identifier
	IList<MATLABStackFrame> stackList
	Public Instance Properties
	MATLABStackTrace
	Message
	MATLABIdentifier
	MATLABStackTraceString
	Public Instance Methods

	Requirements
	Namespace
	Assembly

	See Also

	MATLABStackFrame
	About MATLABStackFrame
	Members
	Constructor
	Constructor Parameters
	string, file
	string, name
	int line
	Public Instance Properties
	File
	Name
	Line
	Public Instance Methods
	ToString
	Equals
	GetHashCode

	Requirements
	Namespace
	Assembly

	See Also

	MWClient
	About MWClient
	Members
	Public Instance Methods
	CreateProxy
	Parameter List
	Close

	Requirements
	Namespace
	Assembly

	See Also

	MWHttpClient
	About MWHttpClient
	Members
	Constructor
	Public Instance Methods
	CreateProxy
	Parameter List
	Close

	Requirements
	Namespace
	Assembly

	See Also

	MWStructureListAttribute
	About MWStructureListAttribute
	Members
	Constructor

	Requirements
	Namespace
	Assembly

	Index

	tables
	MATLAB Production Server Deployment Roles
	Compiler Java Options
	Default Installation Paths
	Custom Installation Roots
	Java Client Exceptions
	MATLAB to Java Numeric Type Compatibility
	How MATLAB Pads Your Java Method Return Type
	Padding Dimensions in MATLAB and Java Data Conversion
	How MATLAB Truncates Your Java Method Return Type
	Truncating Dimensions in MATLAB and Java Data Conversion
	MATLAB to .NET Numeric Type Compatibility
	How Your C# Method Return Type is Padded
	How MATLAB Truncates Your C# Method Return Type
	Truncating Dimensions in MATLAB and C# Data Conversion

